
Review for Test #2

ECE 476 Advanced Embedded Systems

Jake Glower

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Format for Test #2

Five questions

Edge Interrupt

Timer Interrupt

Analog Sensors - Hardware & Software

Digital Sensor - Software

LCD Graphics Display

Random & Matrix Routines in Python

Available in-person or on BlackBoard

In-Person

- 50 minutes

- Work problems in any order

- Able to go back to probelms

BlackBoard

- 100 minutes

- Random order with no backtracking

- Must submit answers to first problem to move on to the next

- Extra time due to no-backtracking, having to download, scan, upload problems

Edge Interrupts
Rising Edge and/or Falling Edge

Example: Up Counter

Define the pin to be input

Define the interrupt service routine

 Usually need to pass data via global

variables

Set up the interrupt

 IRQ_RISING

 IRQ_FALLING

from machine import Pin

interrupt_flag=0

N = 0

pin = Pin(15,Pin.IN,Pin.PULL_UP)

def Count(pin):

 global interrupt_flag

 global N

 interrupt_flag=1

 N = N + 1

pin.irq(trigger=Pin.IRQ_FALLING,

handler=Count)

while(1):

 if(interrupt_flag):

 print("N = ", N)

 interrupt_flag=0

Edge Interrupts (cont'd)

Example: Optical Encoder

 Edge interrupts can be for both rising and falling edges

 You can have multiple edge interrupts turned on at the same time

ChA

A rising

edge

count up

if B = 0

A falling

edge

count up

if B = 1

ChB

B falling

edge

count up

if A = 0

B rising

edge

count up

if A = 1

N = 0

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)

pin2 = Pin(14,Pin.IN,Pin.PULL_UP)

def ChA(pin1):

 global N

 if(pin1.value() == pin2.value()):

 N -= 1

 else:

 N += 1

def ChB(pin2):

 global N

 if(pin1.value() == pin2.value()):

 N += 1

 else:

 N -= 1

pin1.irq(trigger=Pin.IRQ_FALLING |

 Pin.IRQ_RISING, handler=ChA)

pin2.irq(trigger=Pin.IRQ_FALLING |

 Pin.IRQ_RISING, handler=ChB)

Timer Interrupts (periodic)
Can trigger an interrupt every N seconds

Interrupt every 1.00 second

define a timer interrupt

 Timer()

define the interrupt service routine

 usually need global variables

Initialize the timer interrupt

 interrupt rate (freq)

 periodic interrupt

 name of the int service routine

from machine import Pin, Timer

from time import sleep_ms

led = Pin(17, Pin.OUT)

tim = Timer()

N = 0

def tic(timer):

 global N

 N += 1

tim.init(freq=1, mode=Timer.PERIODIC,

callback=tic)

while(1):

 print(N)

 sleep_ms(100)

Timer Interrupts (one-shot)
Can set up a single interrupt N second in the future

Example: Turn off the buzzer 100ms in the future

declare a timer interrupt (tim)

declear inputs and outputs

define the interrupt service routine

 turn off the buzzer

main loop:

wait for a button press

when detected turn on the buzzer

and set up a timer interrupt 100ms in

the future

from machine import Pin, Timer

tim = Timer()

Buzzer = Pin(13, Pin.OUT)

Button = Pin(15, Pin.IN, Pin.PULL_UP)

def BuzzerOff(pin1):

 Buzzer.value(0)

while(1):

 while(Button.value() == 0):

 pass

 while(Button.value() == 1):

 pass

 Buzzer.value(1)

 tim.init(freq=10, mode=Timer.ONE_SHOT,

 callback=BuzzerOff)

Analog Sensors (hardware)

Convert an analog signal to 0V to 3.3V range

Range of the analog input on a Pi-Pico

Instrumentation Amplifier is commonly used

note: circuit ground does not have to be earth ground

+

-

+5V

Y

R

0V @ R = 1200

3.3V @ R = 1400

Analog Sensors (software)

Convert A/D reading to voltage

0x0000 = 0V

0xFFFF = 3.3V

Convert voltage to sensor units

Ohms

Lux

Degrees C

etc.

Example: Thermistor

R = 1000 ⋅ exp 
3950

T+273
−

3950

298

Ω

Example: TMP36

V = 0.5 + 0.01T

Digital Sensors

Many sensors have a digital interface

SPI & I2C:

BME280 tempertature - pressure - humidity

GY521 - accelerometer

For these sensors, you can

Use bit-banging (manually set / clear bits)

Use SPI and I2C functions in Python

You can often times find drivers online

Digital Sensors

Some digital sensors have non-standard interface:

HT11 and HT22

If you can't find a driver, you may need to write custom code to read the

data

Type of bit-banging

Example: HT11

Logic 0: 26 - 28us pulse

Logic 1: 70us pulse

>500us

Start Signal

From Sensor (set pin to input)From Pico (set pin to output)

20-40us 26-28us

50us50us 50us 50us

70us

bit = 0 bit = 1 bit = 0 bit = 0

LCD Graphics Display
480 x 320 display

Able to display text
LCD.Text('Hello World', 10, 50, Red, Black)

Able to draw lines
LCD.Line(5,5,200,200,Yellow)

Able to draw boxes
LCD.Box(1,1,479.319,White)

Random Library
MicroPython includes some random functions

Additional random distributions can be created using these:

randint(a,b) returns an integer in the range of [a,b]

random() returns a float in the range of (0,1)

randrange(a,b,dx) returns a random number in the range of [a,b]

with step size dx

uniform(a,b) returns a float in the range of (a,b)

Matrix Library

Python does not treat arrays as matricies
A = [0]

B = 5*A

print(B)

 B = [0,0,0,0,0]

You have to write your own routines to do matrix operations

add, subrtract, multiply, inverse

These can be combined to do more complex matrix operations

Least squares curve fitting

Not as convenient as Matlab

