
Review for Test #1

ECE 476 Advanced Embedded Systems

Jake Glower

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Format for Test #1

Five questions

1-2 Hardware

Rest Python programming

Available in-person or on BlackBoard

In-Person

- 50 minutes

- Work problems in any order

- Able to go back to probelms

BlackBoard

- 100 minutes

- Random order with no backtracking

- Must submit answers to first problem to move on to the next

- Extra time due to no-backtracking, having to download, scan, upload problems

Hardware: Binary Inputs
0V = logic 0

3.3V = logic 1

Push-Buttons:

Pull-up or pull-down resistor

Voltages:

Convert to 0V / 3.3V with a comparitor

- Also works with resistors

- Also works with thermistors

- Also works with CdS light sensors

+3.3V

50k - 80k

50k - 80k

Pi-Pico Pi-Pico

GP15

GP15

PULL_UP PULL_DOWN

+3.3V

A

B

+3.3V

MCP602

1.73V

1k

Vm

Vp

Y

Hardware: Binary Outputs
logic 0 = 0V

logic 1 = 3.3V

Capable of up to 12.5mA

If load is less than 3.3V / 12.5mA, use a resistor

If load is more,

Use a transistor (on / off)

Use an H-bridge (- / off / +)

2.0V3.3V

R = 130

10mA

GPx

RPi-Pico

Red

LED

+12V

flyback

diode

Rb = 220

Ib

Zetex 1051A

NPN

GP19

M
DC Servo

Motor
Ic

GP16

GP17

GP18

GP19

Pi-Pico

DRV8833

IN1

IN2

IN3

IN4

OUT1

OUT2

OUT3

OUT4

A

C

B

D

Stepper

Motor

A

B

C

D

VCC

GND

+3V to +10V @ 1.5A

Hardware: Analog Inputs

On-board A/D reads 0V to 3.3V

12-bit A/D

0x0000 to 0xFFFF

Part of machine library

Resistor circuits can convert wider ranges

Voltage divider reduces max voltage to 3.3V

Three resistors convert range to 0-3.3V

- Weighted average

y = ax + b ⋅ 3.3V + c ⋅ 0V

a + b + c = 1

Ra = R0/a

Rb = R0/b

Rc = R0/c

0..+10V

R1 = 2k

R1 = 1k

0..3.3V
AN2

Pi-Pico

-10V .. +10V

Rx = 6k

Rc = 3k

AN2
Pi-Pico

+3.3V

Rb = 2k

x
y

0V < y < 3.3V

Hardware: Analog Outputs

Option 1: Use PWM

0% to 100% output

BTJ:

- positive output

H-bridge

- positive and negative output

PWM part of machine library

Option 2: Use D/A and analog

Topic for ECE 320 Electronics

Push-Pull amplifier

Instrumentation Amplifier

Not on test #1 in 476/676

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.5

1

1.5

2

2.5

3

3.5

Time (seconds)

Volts

Average (Low-Frequency Term)

Waveform on GP16

Software: Python Programming

Programs like Matlab

Works with complex numbers

Add, subtract, multiply, divide

and, or, xor, not

Open Save Run Stop

Shell Window

>>> j = (-1) ** 0.5

>>> Z3 = - j*70

>>> Z2 = 1 / (1/(j*60) + 1/(40 + Z3))

>>> Z1 = 1 / (1/50 + 1 / (j*30 + Z2))

>>> Z0 = 20 + Z1

>>> print('Zab = ',Z0)

Zab = (58.96067+9.111071j)

Software: Python Programming

Inlcudes loops

if - elif - else

for loops

while loops

Indentation is important

Signifies contents of loops

Loops end when indentation ends

for i in range(0,6):

 d1 = i

 for j in range(0,6):

 d2 = j

 y = d1 + d2

t = 0

dt = 0.01

while(t < 5):

 y = sin(t)

 t += dt

if(x < 3):

 y = 2*x + 4

elif(x < 5):

 y = 3 - 2*x

else:

 y = 0

Software: Subroutines
Open Save Run Stop

Subroutines declared with def statement

Can pass zero, one, many terms

Can return zero, one, many terms

Subroutines can be reused

Call multiple times if needed

def Operate(A, B):

 C0 = A + B

 C1 = A - B

 C2 = A * B

 C3 = A / B

 return([C0, C1, C2, C3])

X = Operate(4,6)

print(X)

shell

>>>

[10, -2, 24, 0.666667]

>>> C = Operate(8,7)

>>> print(C)

[15, 1, 56, 1.4142857]

Software: Binary I/O

Pin function

Part of machine library

Inputs can be

floating

pulled up

pulled down

Outputs are just

0V logic 0

3.3V logic 1

Binary Input

from machine import Pin

from time import sleep_ms

Button = Pin(15, Pin.IN, Pin.PULL_UP)

while(1):

 X = Button.value()

 print(X)

 sleep_ms(100)

#Binary Output

from machine import Pin

from time import sleep

LED = Pin(16, Pin.OUT)

for i in range(0,10):

 LED.toggle()

 sleep(0.1)

LED.value(0)

Software: Binary Inputs

Programs can respond to levels

1 or 0

Level sensitive prorams

Programs can respond to edges

Rising edge

Falling edge

Several techniques to detect edges

Speaking Listening

decrement time do nothing

Microphone

Time

0

5 min

A = 1 A = 2 A = 3

B = 1 B = 2

Candiate B

Candidate A

GP15

GP14

Software: Analog Inputs

12-Bit A/D on Pico

Part of machine library

Range = 0V to 3.3V

0V reads 0x0000

3.3V reads 0xFFFF

from machine import ADC

from time import sleep_ms

a2d0 = ADC(0)

a2d1 = ADC(1)

while(1):

 x = a2d0.read_u16()

 y = a2d1.read_u16()

 print(x, y)

 sleep_ms(200)

Software: Analog Outputs
Several methods possible

PWM is probably the easiest

PWM

Part of machine library

Able to set the frequency

Able to set the duty cycle

Able to set the pulse width in ns

from machine import Pin, PWM

Aout = Pin(16, Pin.OUT)

Aout = PWM(Pin(16))

Aout.freq(1000)

Aout.duty_u16(6553)

while(1):

 pass

Software: Measuring Time
Part of time library

ticks_ms time since power up in ms

ticks_us time since power up in us

sleep(1.23) pause 1.23 seconds

sleep_ms(10) pause 10ms

sleep_us(10) pause 10us

ticks_us time since power up in us

from time import ticks_us, sleep

x0 = ticks_us()

sleep(1)

x1 = ticks_us()

x2 = ticks_us()

print(x1 - x0 - (x2-x1))

shell

1000004

Software: Measuring Pulse Width
Part of machine library

Measure the width of a high-pulse

1

Measure the width of a low-pulse

0

from machine import Pin, time_pulse_us

Button = Pin(17, Pin.IN, Pin.PULL_UP)

while(1):

 low = time_pulse_us(17, 0, 500_000)

 high = time_pulse_us(17, 1, 500_000)

 print(low, high)

shell

51494 21223

48585 23313

57623 21313

55358 22313

60112 12831

39496 18231

Software: SPI Communications

SPI - 4 wires

CS

CLK

MOSI (TX)

MISO (RX)

Can control pins via software

bit-banging

Can control pins via hardware

SPI function in machine

Load

CLK

QH

shift on the rising edgeread on the falling edge
load data

H G F E D C B A

