Bluetooth Examples

ECE 476 Advanced Embedded Systems
Jake Glower - Lecture #31

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Introduction:

Previous Lecture:
« Send data to your cell phone
- Receive data from your cell phone
« Using bluetooth

In this lecture, we'll build on this to:
- Set the brightness of a NeoPixel string
- Set the color of a NeoPixel string, and
« Control a strobe light

using your cell phone and a bluetooth
interface

Flashlight vi
Brightness: 12

— Terminal

2:38:19.566 Connection lost
2:38:24.144 Connecting to Jakes-Pi ...
2:38:25.169 Connected
2:38:34.416 040

2:38:45.662 255

2:38:49.239 000

2:39:16.504 012

M1 M2 M3 M4 M5 Mé

M7

>

Bluetooth App & Drivers

This lecture assumes

« Serial Bluetooth Terminall app for your cell

phone
- Serial Bluetooth Terminal cell phone app by Kai Morich.

« ble drivers for your Pi-Pico

- ble_advertising.py
- ble_simple_peripheral.py

Please refer to lecture #30 for details on
how to make this bluetooth connection
using this app.

Serial Bluetooth
Terminal

Kai Morich
In-app purchases

C

Uninstall

) D

NeoPixel Brightness Control
« Flashlight v1.py

Starting out, let's program the Pico to
« Control the brightness of a NeoPixel,
« Using your cell phone
« Through a bluetooth interface.

Assume all LEDs display white light
(red / green / blue are the same) with
levels from O to 255.

Flashlight vi
Brightness: 12

— Terminal

2:38:19.566 Connection lost
2:38:24.144 Connecting to Jakes-Pi ...
2:38:25.169 Connected

2:38:34.416 040

2:38:45.662 255

2:38:49.239 000

2:39:16.504 012

M1 M2 M3 M4 M35 M6

M7

.

NeoPixel Driver
Step 1: choose a method for driving the NeoPixels.
« Several methods exist

- Let's use the neopixel library that comes with Thonny.

- Doesn't work with all NeoPixels
- Does work with the one I'm using

The base code to drive a NeoPixel with 16 elements 1s as follows:

import machine, neopixel

N = 16
p = machine.Pin (1)
np = neopixel.NeoPixel (p, N, bpp=3, timing=1)

np.fill1([0,1,2])
np.write ()

base code for driving a 16-element NeoPixel connected to GP1

Bluetooth Message

« Choose the format for the data that's sent from your cell phone.
- 000 to 255

« Parse the bluetooth message in on_rx()

For convenience, assume Geif o (CRIEa) &
o global Level, flag
. TTHeeCthS(ﬁUAS(HIteXt print ("Data received: ", data)
. Try:
Ranging from 000 to 255 Level = int (data[0:3])
Level = min (Level, 255)
on_rx(data): tlag
except:
« Pulls out the first three characters print ('invalid data entry')

- Converts to an integer, and

Note:

« Global variables are used to pass
data (Level)

« Not the best practice, but works

Main Routine
Start with the lights being off

Keep checking the bluetooth serial port

- If a message was received
- flag=1
« Set the brightness of the NeoPixel

« Update the LCD display

flag = 1
Level = 0
np.fill ([Level, Level, Level])
np.write ()

while (1) :

1f sp.is_connected() :
sp.on_write (on_rx)

if(flaqg) :
print ('Brightness = ', Level)
np.fill ([Level, Level, Level])
np.write ()
LCD.Number?2 (Level, 3, 0, 300, 50, Yellow, Black)
flag = 0

Shell Window

The shell window displays debug
information as well. This includes
- The name of the bluetooth connection
(64)
- The raw data received, and

 The brightness level pulled from the
bluetooth data.

Starting advertising
New connection 64
Data received: Db'040\r\n'

Brightness = 40

Data received: Db'255\r\n’
Brightness = 255

Data received: Db'000\r\n"
Brightness = 0

Data received: Db'012\r\n'
Brightness = 12

Flashlight v1
12

Terminal

2:38:19.566 Connection lost
2:38:24.144 Connecting to Jakes-Pi ...
2:38:25.169 Connected

2:38:34.416 040

2:38:45.662 255

2:38:49.239 000

2:39:16.504 012

M1 M2 M3 M4 M35

M6

NeoPixel Flashlight (take 2)
« Flashlight v2.py

The previous code output white light
- RGB levels all the same

Change the code:
- RGB level for each LED is the same
« The values of RGB are independent
« Allows 16 million colors

)
Flashlight 2

Red: 12

Green: 34

- T Control}er g
1o EieeEies

Eerig==]
| 3 i |
SRR

Terminal

12:43:17.837 Disconnected
12:43:18.623 Connecting to Jakes-Pi ...
12:43:19.269 Connected

12:43:25.460 R012

12:43:45.884 R012G034B123

M1 M2 M3 M4 M3 M6

R012G034B123

Bluetooth Message

Assume the message 1s of the form
RxxxGyyyBzzz

The bluetooth rx routine then:
« Pulls out the rgb values
« Assuming a fixed location
- Updates the NeoPixel, and
« Sets a flag

Note
« All data 1s returned using globals

def on _rx(data) :
global r, b, b, flag

print ("Data received: ", data)
Try:

r = int (data[l:4])

g = int (datal[5:8])

b = int (data[9:12])

np.fill([r,qg,b])
np.write ()
flag = 1
except:
print ('format RxxxGxxxBxxx')

Main Routine

Keeps checking the bluetooth serial port

If a message is received (flag is set)
« Update the LCD display
flag = 1

while (1) :

if sp.is_connected() :
sp.on_write (on_rx)

if(flaqg):
LCD.Text2 (str(r) +
LCD.Text2 (str(g) + '
LCD.Text2 (str(b) +
flag = 0

4

’

4

300,
300,
300,

50,
100,
150,

Yellow,
Yellow,
Yellow,

Black)
Black)
Black)

Shell Window

The shell window 1s just used for
debugging. This shows

- The raw message received from your
cell phone, and

 The resulting red / green / blue levels
which are pulled from this message.

Data: Db'R012G034B123\r\n'

r = 12 g = 34 b = 123
Data: Db'RO00GO00OBOOO\Nr\n"
r= 0 g= 0 b= 0

- | TFT Controller

- EEEEEEEE®

Terminal

12:43:17.837 Disconnected
12:43:18.623 Connecting to Jakes-Pi ...
12:43:19.269 Connected

12:43:25.460 R012

12:43:45.884 R012G034B123

M1 M2 M3 M4 M3

R012G034B123

[EEF7Ea
[Erlcrahios]
(El

M6

TEES

NeoPixel Flashlight (take 3)

Use instructions to control the NeoPixel
« Rxxx sets the red color
- Gyyy sets the green color
-« Bzzz sets the blue color

C clear the colors

- W write to the NeoPixel

Similar to the previous code

- Just a different style of controlling the
NeoPixel = Terminal

12:46:45.588

12:46:47.022 Disconnected
12:46:48.691 Connecting to Jakes-Pi ...
12:46:51.049 Connected
12:46:58.093 R012
12:47:05.930 G087

12:47:13.782 B034

12:47:18.352 G

12:47:26.788 W

M1 M2 M3 M4 M5 M6 M7

L

on_rx(data)
When a bluetooth message 1s
received

 Deciper the command

« Set the corresponding color

- Update the NeoPixel if a write
(W) command was received

Again, data 1s returned using
globals

« sort of like an interrupt routine

def on_rx(data) :
global r,g,b,flag
print ("Data received: ", data)
try:
cmd = chr(data[0])
if(cmd == 'R'"):
r = int (dataf[l:4])
if(cmd == 'G") :
g = int(data[l:4])
if(cmd == 'B') :
b = int (datal[l:4])
print ('b = ', b)
if(cmd == 'C"'"):
r =g =>b =20
if(cmd == "W') :
np.fill([r, g,b])
np.write ()

except:

print ('Rxxx/Gxxx/Bxxx/C/W")

Main Routine
- Passes the text string to the on_rx() routine when received, and

- Displays the brightness on the LCD display

flag = 1

r=g=pb=0
np.fill([r,g,b])
np.write ()

while (1) :

1f sp.is_connected() :
sp.on_write (on_rx)

1if(flag):
LCD.Number2(r, 3, 0, 300, 50, Yellow, Black)
LCD.Number2 (g, 3, 0, 300, 100, Yellow, Black)
LCD.Number2 (b, 3, 0, 300, 150, Yellow, Black)
flag = 0

Shell Window

The shell window displays debug
information, such as the raw data received

New connection 64

Data
Data
Data
Data
Data
Data

received:
received:
received:
received:
received:
received:

b'\r\n'
b'RO12\r\n'
b'G087\r\n'
b'B034\r\n'
b'W\r\n'
b'C\r\n'

— Terminal

12:46:45.588

12:46:47.022 Disconnected
12:46:48.691 Connecting to Jakes-Pi
12:46:51.049 Connected
12:46:58.093 R012
12:47:05.930 G087

12:47:13.782 B034

12:47:18.352 G

12:47:26.788 W

M1 M2 M3 M4

W

M5

NeoPixel Strobe Light

Finally, let's build a strobe light. For this function, set the on-time and
off-time of the NeoPixels

on

NeoPixel
Toff (ms) off

Ton (ms)
- g

Assume for this problem that
« All 16 NeoPixels are either off (00/00/00) or on (255/255/255)
- The on time can be adjusted from 1ms to 100ms
« The off time can be adjusted from 1ms to 100ms

Timer Interrupts

Use timer interrupts since timing 1s important
« Ton, Toff determine the on and off times
« Each interrupt sets up the next interrupt using a one-short
« The strobe light is turned off by skipping one of the one-shot initializations.

- deinit() would also work
tim = Timer ()

def L_On(timer) :
global Ton, Status
tim.init (period = Ton, mode=Timer.ONE_SHOT, callback=L_0Off)
np.fill1([255,255,255])
np.write()

def L_Off (timer) :
global Toff, Status
if (Status) :
tim.init (period = Toff, mode=Timer.ONE_SHOT, callback=LOn)
np.f1i11([0,0,07)
np.write ()

on_rx() routine
« Nxxx sets the on time is milliseconds (000 to 999)
- Fxxx sets the off time in milliseconds (000 to 999)
* G turns on the strobe light (go), and
« S stops the strobe light (stop)

def on_rx (data) :
global Ton, Toff, Status, flag

print ("Data received: ", data)
Lry:
cmd = chr(data[0])
if(cmd == 'N'"):
Ton = int (data[l:4])
if(cmd == 'F'):
Toff = int (data[l:4])
if(cmd == 'G") :

Status = 1
tim.init (period = Ton, mode=Timer.ONE_SHOT,

if(cmd == 'S"):
Status = 0
except:

print ('invalid data entry')

callback=L_0On)

Main Routine
- Passes data to on_rx() when a bluetooth message is received, and
- Displays the status of the strobe light.

np.fi11([0,0,07)
np.write()
flag = 1

while (1) :

if sp.is_connected() :
sp.on_write (on_rx)

if(flag):
LCD.Number2 (Ton, 3, 0, 300, 50, Yellow, Black)
LCD.Number?2 (Toff, 3, 0, 300, 100, Yellow, Black)
if (Status == 1) :

LCD.Text2('On ', 300, 150, Yellow, Black)

else:

LCD.Text2 ('0ff', 300, 150, Yellow, Black)
flag = 0

Shell Window

Finally, debug information is displayed
in the shell window. This shows the raw
messages received from your cell phone.

Data
Data
Data
Data

received:
received:
received:
received:

b'NO10\r\n'
b'F490\r\n'
b'G\r\n'
b'S\r\n'

Shell window shows the raw messages received on the bluetooth link

Strobe Light
T(on): 16

T(off): 9%

1248 d 9B

Terminal

12:48:19.583

12:48:20.383 Disconnected
12:48:21.868 Connecting to Jakes-Pi ...
12:48:24.376 Connected
12:48:34.054 NO10

12:48:39.199 F990

12:48:47.791 G

M1 M2 M3 M4 M5

Summary
Using the libraries

 ble_advertising.py

- ble_simple_peripheral.py
you are able to send data from your cell phone to your Pi-Pico. With a little
coding, different commands can be sent to the Pico, controlling its
operation, such as the brightness, color, or flashing rate of a NeoPixel.

Other functions and commands are possible and only limited by the
imagination of the programmer.

References
https://electrocredible.com/raspberry-pi-pico-w-bluetooth-ble-micropython

