
Bluetooth Examples

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #31

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

Previous Lecture:

Send data to your cell phone

Receive data from your cell phone

Using bluetooth

In this lecture, we'll build on this to:

Set the brightness of a NeoPixel string

Set the color of a NeoPixel string, and

Control a strobe light

using your cell phone and a bluetooth

interface

Bluetooth App & Drivers

This lecture assumes

Serial Bluetooth Terminall app for your cell

phone
- Serial Bluetooth Terminal cell phone app by Kai Morich.

ble drivers for your Pi-Pico
- ble_advertising.py

- ble_simple_peripheral.py

Please refer to lecture #30 for details on

how to make this bluetooth connection

using this app.

NeoPixel Brightness Control
Flashlight v1.py

Starting out, let's program the Pico to

Control the brightness of a NeoPixel,

Using your cell phone

Through a bluetooth interface.

Assume all LEDs display white light

(red / green / blue are the same) with

levels from 0 to 255.

NeoPixel Driver

Step 1: choose a method for driving the NeoPixels.

Several methods exist

Let's use the neopixel library that comes with Thonny.
- Doesn't work with all NeoPixels

- Does work with the one I'm using

The base code to drive a NeoPixel with 16 elements is as follows:

import machine, neopixel

N = 16

p = machine.Pin(1)

np = neopixel.NeoPixel(p, N, bpp=3, timing=1)

np.fill([0,1,2])
np.write()

base code for driving a 16-element NeoPixel connected to GP1

Bluetooth Message
Choose the format for the data that's sent from your cell phone.

- 000 to 255

Parse the bluetooth message in on_rx()

For convenience, assume

Three digits of ASCII text

Ranging from 000 to 255

on_rx(data):

Pulls out the first three characters

Converts to an integer, and

Note:

Global variables are used to pass

data (Level)

Not the best practice, but works

def on_rx(data):

 global Level, flag

 print("Data received: ", data)

 try:

 Level = int(data[0:3])

 Level = min(Level, 255)

 flag

 except:

 print('invalid data entry')

Main Routine

Start with the lights being off

Keep checking the bluetooth serial port

If a message was received
- flag = 1

Set the brightness of the NeoPixel

Update the LCD display

flag = 1

Level = 0

np.fill([Level,Level,Level])

np.write()

while(1):

 if sp.is_connected():

 sp.on_write(on_rx)

 if(flag):

 print('Brightness = ',Level)

 np.fill([Level,Level,Level])

 np.write()

 LCD.Number2(Level, 3, 0, 300, 50, Yellow, Black)

 flag = 0

Shell Window

The shell window displays debug

information as well. This includes

The name of the bluetooth connection

(64)

The raw data received, and

The brightness level pulled from the

bluetooth data.

Starting advertising

New connection 64

Data received: b'040\r\n'

Brightness = 40

Data received: b'255\r\n'
Brightness = 255

Data received: b'000\r\n'

Brightness = 0

Data received: b'012\r\n'

Brightness = 12

NeoPixel Flashlight (take 2)
Flashlight v2.py

The previous code output white light

RGB levels all the same

Change the code:

RGB level for each LED is the same

The values of RGB are independent

Allows 16 million colors

Bluetooth Message

Assume the message is of the form
RxxxGyyyBzzz

The bluetooth rx routine then:

Pulls out the rgb values

Assuming a fixed location

Updates the NeoPixel, and

Sets a flag

Note

All data is returned using globals

def on_rx(data):

 global r, b, b, flag
 print("Data received: ", data)

 try:

 r = int(data[1:4])

 g = int(data[5:8])

 b = int(data[9:12])

 np.fill([r,g,b])

 np.write()

 flag = 1

 except:

 print('format RxxxGxxxBxxx')

Main Routine

Keeps checking the bluetooth serial port

If a message is received (flag is set)

Update the LCD display

flag = 1

while(1):

 if sp.is_connected():
 sp.on_write(on_rx)

 if(flag):

 LCD.Text2(str(r) + ' ', 300, 50, Yellow, Black)

 LCD.Text2(str(g) + ' ', 300, 100, Yellow, Black)

 LCD.Text2(str(b) + ' ', 300, 150, Yellow, Black)

 flag = 0

Shell Window

The shell window is just used for

debugging. This shows

The raw message received from your

cell phone, and

The resulting red / green / blue levels

which are pulled from this message.

Data: b'R012G034B123\r\n'

r = 12 g = 34 b = 123

Data: b'R000G000B000\r\n'

r = 0 g = 0 b = 0

NeoPixel Flashlight (take 3)

Use instructions to control the NeoPixel

Rxxx sets the red color

Gyyy sets the green color

Bzzz sets the blue color

C clear the colors

W write to the NeoPixel

Similar to the previous code

Just a different style of controlling the

NeoPixel

on_rx(data)

When a bluetooth message is

received

Deciper the command

Set the corresponding color

Update the NeoPixel if a write

(W) command was received

Again, data is returned using

globals

sort of like an interrupt routine

def on_rx(data):

 global r,g,b,flag
 print("Data received: ", data)

 try:

 cmd = chr(data[0])

 if(cmd == 'R'):

 r = int(data[1:4])

 if(cmd == 'G'):

 g = int(data[1:4])

 if(cmd == 'B'):

 b = int(data[1:4])

 print('b = ', b)

 if(cmd == 'C'):

 r = g = b = 0
 if(cmd == 'W'):

 np.fill([r,g,b])

 np.write()

 except:

 print ('Rxxx/Gxxx/Bxxx/C/W')

Main Routine
Passes the text string to the on_rx() routine when received, and

Displays the brightness on the LCD display

flag = 1

r=g=b=0
np.fill([r,g,b])

np.write()

while(1):

 if sp.is_connected():

 sp.on_write(on_rx)

 if(flag):

 LCD.Number2(r, 3, 0, 300, 50, Yellow, Black)

 LCD.Number2(g, 3, 0, 300, 100, Yellow, Black)

 LCD.Number2(b, 3, 0, 300, 150, Yellow, Black)

 flag = 0

Shell Window

The shell window displays debug

information, such as the raw data received

New connection 64

Data received: b'\r\n'
Data received: b'R012\r\n'

Data received: b'G087\r\n'

Data received: b'B034\r\n'

Data received: b'W\r\n'

Data received: b'C\r\n'

NeoPixel Strobe Light

Finally, let's build a strobe light. For this function, set the on-time and

off-time of the NeoPixels

Ton (ms)
Toff (ms)

NeoPixel

on

off

Assume for this problem that

All 16 NeoPixels are either off (00/00/00) or on (255/255/255)

The on time can be adjusted from 1ms to 100ms

The off time can be adjusted from 1ms to 100ms

Timer Interrupts

Use timer interrupts since timing is important

Ton, Toff determine the on and off times

Each interrupt sets up the next interrupt using a one-short

The strobe light is turned off by skipping one of the one-shot initializations.
- deinit() would also work

tim = Timer()

def L_On(timer):

 global Ton, Status
 tim.init(period = Ton, mode=Timer.ONE_SHOT, callback=L_Off)

 np.fill([255,255,255])

 np.write()

def L_Off(timer):

 global Toff, Status

 if(Status):

 tim.init(period = Toff, mode=Timer.ONE_SHOT, callback=LOn)

 np.fill([0,0,0])

 np.write()

on_rx() routine
Nxxx sets the on time is milliseconds (000 to 999)

Fxxx sets the off time in milliseconds (000 to 999)

G turns on the strobe light (go), and

S stops the strobe light (stop)

def on_rx(data):

 global Ton, Toff, Status, flag

 print("Data received: ", data)

 try:

 cmd = chr(data[0])

 if(cmd == 'N'):

 Ton = int(data[1:4])

 if(cmd == 'F'):
 Toff = int(data[1:4])

 if(cmd == 'G'):

 Status = 1

 tim.init(period = Ton, mode=Timer.ONE_SHOT, callback=L_On)

 if(cmd == 'S'):

 Status = 0

 except:

 print('invalid data entry')

Main Routine
Passes data to on_rx() when a bluetooth message is received, and

Displays the status of the strobe light.

np.fill([0,0,0])

np.write()
flag = 1

while(1):

 if sp.is_connected():

 sp.on_write(on_rx)

 if(flag):

 LCD.Number2(Ton, 3, 0, 300, 50, Yellow, Black)

 LCD.Number2(Toff, 3, 0, 300, 100, Yellow, Black)

 if(Status == 1):

 LCD.Text2('On ', 300, 150, Yellow, Black)

 else:

 LCD.Text2('Off', 300, 150, Yellow, Black)
 flag = 0

Shell Window

Finally, debug information is displayed

in the shell window. This shows the raw

messages received from your cell phone.

Data received: b'N010\r\n'

Data received: b'F490\r\n'

Data received: b'G\r\n'

Data received: b'S\r\n'

Shell window shows the raw messages received on the bluetooth link

Summary

Using the libraries

ble_advertising.py

ble_simple_peripheral.py

you are able to send data from your cell phone to your Pi-Pico. With a little

coding, different commands can be sent to the Pico, controlling its

operation, such as the brightness, color, or flashing rate of a NeoPixel.

Other functions and commands are possible and only limited by the

imagination of the programmer.

References

https://electrocredible.com/raspberry-pi-pico-w-bluetooth-ble-micropython

