
PIO State Machines

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture 29

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

PIO State Machines are a semi-unique feature of Pi-Picos

These are independent processors which are able to drive the I/O pins.

These are described on page 34 of the PI-Pico data sheets:

The PIO subsystem on RP-series microcontrollers allows you to write

small, simple programs for what are called PIO state machines, of

which RP2040 has eight split across two PIO instances,

The intent is to make nonstandard communications more efficient

NeoPixels

HT11, HT22 TH sensors

Essentially replacing bit-banging.

State Machines

Four state machines are available

Each can run a short program

Limit = 32 instructions

Reduced assembler instruction set

Clock range

min = 2kHz

max = 125MHz

Each PIO State Machines can

Read from I/O pins

Write to I/O pins

Pass data to/from the Pico via FIFO

buffers
PIO Program Memory

32 Instructions

4 Read Ports

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

State

Machine

#0

State

Machine

#1

State

Machine

#2

State

Machine

#3

GPIO

Output

Level

x32

GPIO

Output

Enable

x32

x32 GPIO

Input

I/O

Mapping

State Machine Instructions
https://www.seeedstudio.com/blog/2021/01/25/programmable-io-with-raspberry-pi-pico/

The PIO State Machines use a limited set of assembler instructions.

IN – Shifts in one word of 32 bits into the ISR

OUT – Shifts out one word of 32 bits from the OSR to another location

PUSH – Sends data to the RX (input) FIFO

PULL – Gets data from the TX (output) FIFO

MOV – Moves data from one location to another

IRQ – Sets or clears interrupt flag

SET – Writes data to destination

WAIT – Pauses until a defined action happens

JMP – Jumps to a different point in the code

This doesn't seem like a lot,

It's enough to program some fairly elaborate I/O functions

- CAN

- NeoPixel

- HT11

- etc

Topics for This Lecture:
Output a 1kHz square wave

- basic program

Output a 1Hz square wave

- looping

Output a 2kHz square wave with variable duty cycle

- multiple PIO functions

Generate a pulse with N bounces on the rising edge

- passing data to a PIO function

Driving a NeoPixel

- generating nonstandard output signals

- with precise timing

Output a 1kHz Square Wave
https://dev.to/blues/a-practical-look-at-pio-on-the-raspberry-pi-pico-50j8

Starting out, let's make a light blink at 1kHz:

import time

import rp2

from machine import Pin

def blink():

 set(pins, 1)

 set(pins, 0)

 wrap()

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

sm = rp2.StateMachine(0, blink, freq=2000, set_base=Pin(16))

sm.active(1)

time.sleep(3)

sm.active(0)

Explaining this program:

def blink():

 set(pins, 1)

 set(pins, 0)

 wrap()

Assembler subroutine which runs on the state-machine.

This program

Sets the I/O pin

Clears the I/O pin, then

The program repeats (wrap())

Set up the PIO State Machine

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

sm = rp2.StateMachine(0, blink, freq=2000, set_base=Pin(16))

This defines state machine #0

The routine called is blink

The state machine operates with a 2000Hz clock frequency

- range is 2kHz to 125MHz (!)

The output pin used is GP16

When initializing the state-machine, you can also specify input pins, input

shift direction, output shift direction, and other parameters. Please visit

MicroPython for a more detailed explanation

https://docs.micropython.org/en/latest/library/rp2.StateMachine.html

The last set of commands:

sm.active(1)

time.sleep(3)

sm.active(0)

turns on (activates) the state-machine for three seconds.

The result is a 1kHz square wave

A slower square wave can be produced by adding wait states:

[31] adds 31 wait states (essentially nop() commands)

range is [1] to [31]

- 6 bits
import time

import rp2

from machine import Pin

def blink():

 set(pins, 1) [31]

 nop() [31]

 set(pins, 0) [31]

 nop() [31]

 wrap()

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

sm = rp2.StateMachine(0, blink, freq=2000, set_base=Pin(16))

sm.active(1)

time.sleep(3)

sm.active(0)

Result is a 64ms square wave

Each loop has four instructions,

Plus 31x4 nops inserted

The period is thus

 T = 32 ⋅ 4 ⋅ 0.5ms = 64ms

Output a 1Hz Square Wave

Looping can be accomplished by adding counters and labels.

set output pin
move 10 to register x

move 10 to regiser y

wait seven clocks
decrement y. jump to "loop_1" if not zero
decrement x. jump to "loop_0" if not zero

clear output pin
move 10 to register x

move 10 to regiser y

wait seven clocks
decrement y. jump to "loop_2" if not zero
decrement x. jump to "loop_3" if not zero

repeat

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

def blink_1Hz():

 set(pins, 1)

 set(x, 10)

 label("loop_0")

 set(y, 10)

 label("loop_1")

 nop().delay(6)

 jmp(y_dec, "loop_1")

 jmp(x_dec, "loop_0")

 set(pins, 0)

 set(x, 10)

 label("loop_2")

 set(y, 10)

 label("loop_3")

 nop().delay(6)

 jmp(y_dec, "loop_3")

 jmp(x_dec, "loop_2")

 wrap()

With this program

You loop 100 times (x=10, y=10, keep looping)

Each loop takes ten clocks

- nop.delay(6) takes seven clocks

- plus three for the jump instruction and label

For a total of 1000 clocks (500ms) high, 1000 clocks (500ms) low

Aliasing & Two PIO State Machines

The Pico has four PIO State Machines

These can run separate programs

These can run with different clocks

Example: Turn on two PIO state machines

led_off(): Called every 2000 Hz

led_on(): Called every 2001 Hz

This produces a variable duty cycle (beat frequency = 1Hz)

set

2000 Hz

clear

2001 Hz

Code:

from rp2 import PIO, StateMachine, asm_pio

from machine import Pin

import time

@asm_pio(set_init=PIO.OUT_LOW)

def led_off():

 set(pins, 0)

@asm_pio(set_init=PIO.OUT_LOW)

def led_on():

 set(pins, 1)

sm1 = StateMachine(1, led_off, freq=2000, set_base=Pin(16))

sm2 = StateMachine(2, led_on, freq=2001, set_base=Pin(16))

sm1.active(1)

sm2.active(1)

https://www.seeedstudio.com/blog/2021/01/25/programmable-io-with-raspberry-pi-pico/

One-Time Programs - BlinkN
https://dev.to/blues/a-practical-look-at-pio-on-the-raspberry-pi-pico-50j8

PIO programs can be triggered by the main routine

Triggered when data is pushed onto the stack

- put() executed

Also allows data to be passed to the PIO program

Example: BlinkN

Output N+1 pulses when triggered

Each pulse is 1ms

put(3) generates four pulses

3 is pushed onto the stack

GP16

Code:

Program starts with sm.put(3)

Puts the number 3 on the stack

Triggers the PIO code

BlinkN():

Pulls number off the stack

- Placed in osr

Moves osr to register x

- Counter for following loop

Pulses GP16 high then low

- 2 clocks = 1ms

Decrements x

- Loop back if x >= 0

- Exit if x < 0

import time

import rp2

from machine import Pin

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

def BlinkN():

 pull()

 mov(x, osr)

 jmp(not x, "loop_end")

 label("loop_2")

 set(pins, 1).delay(1)

 set(pins, 0)

 jmp(x_dec, "loop_2")

 label("loop_end")

sm = rp2.StateMachine(0, BlinkN,

freq=2_000, set_base=Pin(16))

sm.active(1)

while(1):

 sm.put(3)

 time.sleep(0.1)

Result: Blink(N)
sm.put(3) command

Creates four pulses

Each 1ms wide (2 clocks)

One-Time Program: Bouncing
https://dev.to/blues/a-practical-look-at-pio-on-the-raspberry-pi-pico-50j8

Multiple PIO State Machines are available

Pico has four

Each can run a separate program

Example: Create an output with N bounces on the rising edge

Use two PIO State Machines

sm0: Sets GP16 after N+1 bounces

sm1: Clears GP16

Calling Sequence for 5+1 bounces:

 sm0.put(5)

 sm1.put(1)

State Machine 1 Code:

State-machine 1 is fairly simple:

It pulls the data off the state to clear the stack, and then

Clears GP16

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

def clear_pin():

 pull()

 set(pins, 0)

State Machine 0 Code

State-machine 0 is a little more complicated:

It first pulls the number pushed off the stack, storing it in the osr register

This value is then moved to register x, telling the state-machine how many times

to bounce

The pins are then set and cleared (one bounce)

Counter x is then decremented, and

The bouncing continues until x is decremented past zero

Once bouncing is completed, the GPIO pin is set

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

def set_pin():

 pull()

 mov(x, osr)

 label("loop")

 set(pins, 1).delay(1)

 set(pins, 0)

 jmp(x_dec, "loop")

 set(pins, 1)

Overall Code

set_pin():

Pulls number off the stack

Bounces N+1 times

Ends with GP16 set

clear_pin():

Pulls data off the stack

- clear the stack

Sets GP16

Main Loop

Set with 5+1 bounces

Wait 10ms

Then clear

import time

import rp2

from machine import Pin

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

def set_pin():

 pull()

 mov(x, osr)

 label("loop")

 set(pins, 1).delay(1)

 set(pins, 0)

 jmp(x_dec, "loop")

 set(pins, 1)

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

def clear_pin():

 pull()

 set(pins, 0)

sm0 = rp2.StateMachine(0, set_pin,

freq=10_000, set_base=Pin(16))

sm1 = rp2.StateMachine(1, clear_pin,

freq=10_000, set_base=Pin(16))

sm0.active(1)

sm1.active(1)

while(1):

 sm0.put(5)

 time.sleep(0.01)

 sm1.put(1)

 time.sleep(0.1)

Bouncing Results

Bounces N+1 times (6)

Total time = 10ms

- Main routine isn' t locked up while the PIO code runs

NeoPixels & State Machines
https://www.instructables.com/Respberry-Pi-Pico-W-NeoPixels-Experiments-With-Pro/

Finally, let's drive a NeoPixel using a state-machine.

Really what PIO State Machines are designed for

Provide non-standard I/O with critical timing

Without tying up the CPU with bit-banging

NeoPixel Timing:

Logic 1: 700ns pulse +/- 120ns

Logic 0: 300ns pulse +/- 120ns

Each Bit: 1200ns +/- 120ns

300ns 700ns900ns 500ns

0 0 0 0 1 1 1 1

Step 1: Send GRB data to the PIO routine

Send a single GRB message

Total length = 24 bits

Pass as a 32-bit number

- Left justified

- Shift left to get each following bit

Code:

g = 50

r = 100

b = 150

grb = (g << 16) + (r << 8) + b

sm.put(grb << 8)

Step 2: State-Machine takes over

32-bit word is pulled

- stored in osr

x is set to 23

- count 24 bits

move msb of osr to y

- shift left

Output a 1 or 0

- 1 = 700ms high, 500ms low

- 0 = 300ms high, 900ms low

Decrement x

- go onto the next bit

def neo_prog():

 pull()

 set(x, 23)

 label("loop_pixel_bit")

 out(y, 1)

 jmp(not_y, "bit_0")

 set(pins, 1).delay(13)

 set(pins, 0).delay(9)

 jmp("bit_end")

 label("bit_0")

 set(pins, 1).delay(5)

 set(pins, 0).delay(17)

 label("bit_end")

 jmp(x_dec, "loop_pixel_bit")

https://www.instructables.com/Respberry-Pi-Pico-W-NeoPixels-Experiments-With-Pro/

Calling Routine

Single NeoPixel

Teal light

sm = rp2.StateMachine(0, neo_prog,

freq=20_000_000, set_base=Pin(12))

sm.active(1)

g = 0x55

r = 0x0F

b = 0x1F

grb = (g << 16) + (r << 8) + b

while(1):

 sm.put(grb << 8)

 time.sleep(0.1)

Talking to N NeoPixels
https://www.instructables.com/Respberry-Pi-Pico-W-NeoPixels-Experiments-With-Pro/

Calling Sequence

Push the number of NeoPixels on the stack, then

Push the GRB values of each NeoPixel onto the stack

Example: 16 NeoPixels

x = 0

N = 16

while(1):

 x = (x + 1) % 256

 sm.put(N-1)

 for i in range(0,N):

 g = 0

 r = i*10

 b = 160 - r

 grb = (g << 16) + (r << 8) + b

 sm.put(grb << 8)

 time.sleep(0.05)

State-Machine:
https://www.instructables.com/Respberry-Pi-Pico-W-NeoPixels-Experiments-With-Pro/

neo_prog():

State machine that drives N NeoPixels

def neo_prog():

 pull() # osr <= number of pixels - 1

 mov(y, osr) # y <= number of pixels - 1

 label("loop_pixel")

 mov(isr, y) # isr (pixel counter) <= y

 pull() # osr <= 24 bits GRB

 set(x, 23) # x (bit counter) <= 23

 label("loop_pixel_bit")

 out(y, 1) # y <= left-most 1 bit of osr

 jmp(not_y, "bit_0")

 set(pins, 1).delay(13) # 1: high (7 cycles)

 set(pins, 0).delay(9) # 1: low (5 cycles)

 jmp("bit_end")

 label("bit_0")

 set(pins, 1).delay(5) # 0: high (3 cycles)

 set(pins, 0).delay(17) # 0: low (9 cycles)

 label("bit_end")

 jmp(x_dec, "loop_pixel_bit") # x is bit counter

 mov(y, isr) # y <= isr (pixel counter)

 jmp(y_dec, "loop_pixel") # y is pixel counter

Result:
Drives all 16 NeoPixels

Each can be controlled independently

Updated each time you push data on the sm0 stack

Summary
PIO State Machines are a fairly unique feature of the Raspberry Pi Pico

With state machines

You are able to drive devices which use nonstandard interfaces

Without having to resort to bit-banging.

While driving the device, the main routine is free to do other stuff

This can improve the efficiency of code running on a Pi-Pico.

References
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

https://www.seeedstudio.com/blog/2021/01/25/programmable-io-with-raspberry

-pi-pico/

https://dev.to/blues/a-practical-look-at-pio-on-the-raspberry-pi-pico-50j8

https://www.instructables.com/Respberry-Pi-Pico-W-NeoPixels-Experiments-W

ith-Pro/

