
I2C Communications

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #27

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

I2C Communications

Previously, we looked at SPI communications

Four wire communication

- CS, CLK, MISO, MOSI

I2C Communications is another for of serial communications

Two wire communication

- SDA: A bi-directional bus

- SCL: The clock output from the bus master

Pico

(Master)

SDA

SCL

SCLSDA SCLSDA SCLSDA

Slave #0 Slave #1 Slave #2

I2C Functions

The machine library includes several I2C functions

from machine import I2C

i2c = I2C(0) declare I2C as an object

i2c.scan() scan for I2C devices,

returns 7-bit addresses

i2c.writeto(42, b'123') Write three butes to device at address 42

i2c.readfrom(0x3a, 4) Read four bytes from device at address 0x3a

I2C.start() Generate a START condition on the bus

I2C.stop() Generate a STOP condidion on the bus

i2c.writeto_mem(addr, reg, data)

i2c.readfrom_mem(addr, reg, bytes)

I2C Data Packets

With I2C communications, data is sent in packets which consist of

A Start Condition:

- SDA switches high to low before SCL switches from low to high

An address: 7 or 10 bit sequence unique to each slave

Read/Write Bit:

- 0: Master talking to slave

- 1: Master requests data from slave

Data (data going to and from the master), and

A Stop Condition:

- SDA line switches from low to high after the SCL switches from low to high

Start Address r/w ack Data frame 1 Data Frame 2ack ack stop

7-10 bits 8-bits 8-bits

I2C Message

I2C Communications Style
I2C is a little different from SPI

SPI

Send commands on MOSI

Send data on MOSI

Receive data on MISO

I2C

Read from and write to registers

Reading

- Get constants such as calibration data

- Get sensor readings

Writing

- Set the bandwidth

- Set the sampling rate

Sensor

Read

Write

Registers

Pico

SDA

SCL

I2C

I2C on a Pi-Pico

The Pi-Pico has two I2C busses

I2C0 & I2C1

Your choice which pins are used

I2C0 I2C1

SDA SCL SDA SCL

GP0 GP1 GP2 GP3

GP4 GP5 GP6 GP7

GP8 GP9 GP10 GP11

GP12 GP13 GP14 GP15

GP16 GP17 GP18 GP18

GP20 GP21 GP26 GP27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15 GP16

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28

GND

GP27

GP26

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

USB

I2C0-SDA

I2C0-SCL

I2C0-SDA

I2C0-SCL

I2C0-SDA

I2C0-SCL

I2C0-SDA

I2C0-SCL

I2C0-SDA

I2C0-SCL

I2C0-SDA

I2C0-SCL

I2C1-SDA

I2C1-SCL

I2C1-SDA

I2C1-SCL

I2C1-SDA

I2C1-SCL

I2C1-SDA

I2C1-SCL

I2C1-SDA

I2C1-SCL

I2C1-SDA

I2C1-SCL

I2C Example: BME280

Only two wires are needed for I2C communications

SDA: Serial Data

SCL: Serial Clock

(plus a common ground of course)

VCC

GND

SCL

SDA

CSB

SDO

GP0/SDA

GP1/SCL

+3.3V

0V

BME280
Pico

Identifying I2C Devices:

i2c.scan()

Returns ID of all I2C devices on the bus

- devices is an array

- [id0, id1, id2, etc]

- [] if nothing is connected

Example: BME280

- ID is 0x76

import machine

i2c = machine.I2C(0, scl=machine.Pin(1), sda=machine.Pin(0))

devices = i2c.scan()

if(devices):

 for d in devices:

 pring(hex(d))

Shell

MPY: soft reboot

0x76

Reading and Writing Registers

Useful routines

Write 1+ bytes to an I2C device

- addr = device ID (0x76)

- register = what register you're writing to (starting address)

- data = bytes to write (1+)

Read 1+ bytes from an I2C device

- nbytes = number of bytes to read

i2c = machine.I2C(0, scl=machine.Pin(1), sda=machine.Pin(0))

def reg_write(i2c, addr, reg, data):

 msg = bytearray()

 msg.append(data)

 i2c.writeto_mem(addr, reg, msg)

def reg_read(i2c, addr, reg, nbytes):

 data = i2c.readfrom_mem(addr, reg, nbytes)

 return data

BME280 Registers

With I2C, all communication goes through

registers

The data sheets tell you

The address of the registers

Whether they are read or write

What the register does

You kind of need this information...

BME280 Registers

address r/w name

0xf5 w config

0xf4 w ctrl_meas

0xf3 r status

0xf2 w ctrl_hum

0xfe r humidity_7:0

0xfd r humidity_15:8

0xfc r temp_4:0

0xfb r temp_12:5

0xfa r temp_20:13

0xf9 r pres_4:0

0xf8 r pres_12:5

0xf7 r pres_20:13

BME280 Registers: 0xF5 config

Writing to 0xF5 sets

The standby time (low-power state) per sample

- Total time = standby time plus the measurement time

- Measurement time = 1ms x Number of oversamples

the filter's pole

- 1st-order digital filter: 


kz
z−a



the type of communications:

config (0xF5)

7 6 5 4 3 2 1 0

tstandby
000 = 0.5ms

001 = 62.5ms
010 = 125ms
011 = 250ms
100 = 500ms
101 = 1000ms

filter pole @ z = a
000: a = 0 (no filter)

001: a = 1/2
010: a = 3/4
011: a = 7/8

1xx: a = 15/16

comm
0 = I2C
1 = SPI

BME280 Registers: 0xF4: ctrl_meas

Writing to 0xF4 sets

the oversampling for temperature,

the oversampling for pressure, and

the operation mode:

- sleep (no conversions)

- forced (one conversion)

- normal (constantly sampling at a rate determined by tstandby

ctrl_meas (0xF4)

7 6 5 4 3 2 1 0

oversampling (temp)
0 = 0x
1 = 1x
2 = 2x
3 = 4x
4 = 8x

5+ = 16x

oversampling (pres)
0 = 0x
1 = 1x
2 = 2x
3 = 4x
4 = 8x

5+ = 16x

mode
00 = sleep
01 = forced
10 = forced
11 = normal

BME280 Registers: 0xF2: ctrl_hum:

Writing to 0xF2 sets the oversampling rate for humidity

ctrl_meas (0xF4)

7 6 5 4 3 2 1 0

oversampling (hum)
0 = 0x
1 = 1x
2 = 2x
3 = 4x
4 = 8x

5+ = 16x

BME280 Registers: 0xF3 status

Status tells you when the A/D conversion is complete

bit 3 = 1: conversion complete

bit 3 = 0: conversion in process

status (0xF3)

7 6 5 4 3 2 1 0

1 = done
0 = working

20-Bit A/D Registers

The raw A/D results are read from 0xF7 yo 0xFE

Conversion to relative humidity, degrees C, hPa requires calibration constants

- Also stored in the registers

The algorithm is fairly complicated

- Given in the data sheets

Name Memory Locations

Humidity
raw data reading (16 bits)

0xFD : 0xFE

Temperature
raw data reading (20 bits left justified)

0xFA : 0xFB : 0xFC

Pressure
raw data reading (20 bits left justified)

0xF7 : 0xF8 : 0xF9

BME280 Temperature
I2C communications example

Step 1: Set up the conversion registers

config(0xf5) = 0x60

- 500ms sampling rate

- No filter

- I2C communications

ctrl_meas(0xf4) = 0xFF

- 16x oversampling

- normal operation

the set-up would be

set up BME280

reg_write(i2c, addr, 0xf5, 0x60)

reg-write(i2c, addr, 0xf4, 0xff)

Step 2: Read the raw A/D reading

Waiting until bit #3 of Status is one

- meaning the A/D conversion is done

Read the data at registers 0xFA : 0xFB : 0xFC

- 20-bit integer

- left justified

 while(ord(reg_read(i2c, addr, 0xf3, 1)) & 0x08):

 pass

 x0 = ord(reg_read(i2c, addr, 0xFA, 1))

 x1 = ord(reg_read(i2c, addr, 0xFA+1, 1))

 x2 = ord(reg_read(i2c, addr, 0xFA+2, 1))

 raw = ((x0 << 16) | (x1 << 8) | x2) >> 4

Step 3: Convert to degrees C

Read in the calibration constants (T1, T2, T3)

Convert the 20-bit integer to a degrees C (float)

Procedure is given in the data sheets

def read_temp():

 while((ord(reg_read(i2c, addr, 0xf3, 1)) & 0x08) == 0):

 pass

 x0 = ord(reg_read(i2c, addr, 0xFA, 1))

 x1 = ord(reg_read(i2c, addr, 0xFA+1, 1))

 x2 = ord(reg_read(i2c, addr, 0xFA+2, 1))

 raw = ((x0 << 16) | (x1 << 8) | x2) >> 4

 x = raw - (T1<<4)

 ax2 = (x*x*T3) >> 34

 bx = x*T2 >> 14

 T = (ax2 + bx) / 5120

 return(T)

The resulting main routine is then pretty simple:

Conversion time set to 500ms

t measures the time since the main loop started

Timing is a little off since print() also takes some time

t0 = time.ticks_ms()

for i in range(0,5):

 T = read_temp()

 t = time.ticks_ms()

 print((t-t0)/1000, T))

sec degC

0.003 25.3166

0.534 25.68203

1.075 25.75625

1.606 25.78144

2.148 25.80117

Resulting Temperature vs. Time

conversion time = 1000ms

- max (20-bit) resolution

16x oversampling

2nd-order filter

250 500 750 1000 1250 1500 1750 2000
20.8

20.9

21

21.1

21.2

21.3

21.4

21.5

Time (seconds)

Degrees C

BME280: Pressure

Similar algorithm for pressure

Note: Calibration requires a temperature reading

Algorithm given in data sheets

def read_pres(T):

 x0 = ord(reg_read(i2c, addr, 0xF7, 1))

 x1 = ord(reg_read(i2c, addr, 0xF7+1, 1))

 x2 = ord(reg_read(i2c, addr, 0xF7+2, 1))

 raw = ((x0 << 16) | (x1 << 8) | x2) >> 4

 t_fine = round(T*25600/5)

 var1 = t_fine - 128000

 var2 = var1 * var1 * P6

 var2 = var2 + ((var1 * P5) << 17)

 var2 = var2 + (P4 << 35)

 var1 = (((var1 * var1 * P3) >> 8) + ((var1 * P2) >> 12))

 var1 = (((1 << 47) + var1) * P1) >> 33

 if var1 == 0:

 return 0

 p = 1048576 - raw

 p = (((p << 31) - var2) * 3125) // var1

 var1 = (P9 * (p >> 13) * (p >> 13)) >> 25

 var2 = (P8 * p) >> 19

 pressure = ((p + var1 + var2) >> 8) + (P7 << 4)

 pressure = pressure / 25600

 return(pressure)

Pressure Readings vs. Time
delay = 1000ms, 16x oversampling, 2nd-order filter

A little noisy

Windy days caused by changes in air pressure

Resolution is better than 0.1hPa

250 500 750 1000 1250 1500 1750 2000
1000.4

1000.5

1000.6

1000.7

1000.8

1000.9

Time (seconds)

hPa

Measure the Height of AGHill
Can you measure the height of a building

using air pressure?

As you go from the basement to the 3rd

floor

Altitude goes up

Air pressure goes down

Can you measure this with a BME280?

Resolution < 0.1 hPa

What is the corresponding height of

AGHill?

Measuring Pressure Change

Start in the basement

Measure pressure every 1.0 second

Save data to a file

Pause 100 seconds

Go up the stairs to the 3rd floor

Pause 100 seconds

Go back to the basement

Pause 100 seconds

The net result is as expected:

Higher elevation = lower pressure

Change in pressure = 3.5 hPa

0 50 100 150 200 250 300 350 400
983

984

985

986

987

988

Seconds

hPa

Basement Basement

3rd Floor

Computing Height
https://www.omnicalculator.com/physics/air-pressure-at-altitude

From an on-line calculator

15m change in pressure = 1.9 hPa

7.89 m / hPa

3.5 hPa = 27.6 meters

Computed distance

Basement to 3rd floor

Seems kind of high

Height (m) Air Pressure (hPa)

0 987.000

5 986.366

10 985.732

15 985.099

GY521: Accelerometer

Previously, we looked at reading a GY-521 sensor using a library. With the

I2C bus, you can access the information directly. Assume the GY-521 is

connected to pins 0 and 1

VCC

GND

SCL

SDA

XCL

ADO

GP0/TX

GP1/RX

+5V

0V

GY-521

Pico

The register locations can be found using the data sheets

0x1A: CONFIG

0x1A CONFIG

7 6 5 4 3 2 1 0

EXT_SYNC_SET DLP_CFG

EXT_SYNC_SET allows you to synchronize sampling based upon

temperature, gyro, or acceleration. Set to zero if not using.

DLP_CFG configures the digital low-pass filter

DLP_CFG Bandwidth
(Hz)

Delay (ms)

0 260 0

1 184 2

2 94 3
3 44 4.9

4 21 8.5

5 10 13.8

6 5 19

7 reserved

0x1C: ACCEL_CONFIG This register allows you to set the range of the

accelerometer

0x1C: ACCEL_CONFIG

7 6 5 4 3 2 1 0

XA_ST YA_ST ZA_ST AFS_SEL

XA_ST enables the self-test of the accelerometer.

AFS_SEL sets the range

AFS_SEL full-scale

0 +/- 2g

1 +/- 4g

2 +/- 8g

3 +/- 16g

0x6B: PWR_MGMT_1 This lets you set the poer mode and clock source

0x6B: PWR_MGMT_1

7 6 5 4 3 2 1 0

DEVICE_RESET SLEEP CYCLE TEMP_DIS CLKSEL

SLEEP:

0 Normal operation

1 places it in a low-power sleep state

CYCLE:

0 Normal operation

1 Cycle between sleep state and taking one sample.

TEMP_DIS

0 Normal operation

1 Disable temperature sensor

CLKSEL

0 Internal 8MHz

1 PLL with X axis gyroscope as reference

7 Stops the clock and keeps the timing generator in reset

The actual acceleration data is available from reading registers 0x3B to

0x40:

Addr
(hex)

Register Name R/W

3B ACCEL_XOUT_H R X acceleration: bits 15:8

3C ACCEL_XOUT_L R X acceleration: bits 7:0

3D ACCEL_YOUT_H R Y acceleration: bits 15:8

3E ACCEL_YOUT_L R Y acceleration: bits 7:0

3F ACCEL_ZOUT_H R Z acceleration: bits 15:8

40 ACCEL_ZOUT_L R Z acceleration: bits 7:0

Net Reslult: first set up the sensor. Assuming

260Hz bandwidth

+/- 2g range

8MHz internal oscillator

The set-up code is

i2c = machine.I2C(0, scl=machine.Pin(1), sda=machine.Pin(0))

Print out any addresses found

devices = i2c.scan()

if devices:

 for d in devices:

 print('I2C Device Found:',hex(d))

addr = devices[0]

print('Communicating with ', hex(addr))

set bandwidth

reg_write(i2c, addr, 0x1a, 6)

set range to +/- 2g

reg_write(i2c, addr, 0x1c, 0x00)

RANGE = 2

set clock freq

reg_write(i2c, addr, 0x6b, 0)

The acceleration can then be read as

def accel_read(reg):

 x = reg_read(i2c, addr, reg, 2)

 y = (x[0] << 8) + x[1]

 if(y > 0x8000):

 y = y - 0x10000

 y = y / 0x8000

 return(y)

x = accel_read(0x3b) * RANGE

y = accel_read(0x3d) * RANGE

z = accel_read(0x3f) * RANGE

Drop Test

Measure distance an objet falls

Experiment:

Drop the sensor from 50cm

Measure the acceleration every 10ms

Define "free-fall" as when |accel| < 0.5g

Drop @ 0.61 sec

Land @ 1.00 sec

Distance = 50.1 cm

Bandwidth Time
|accel| < 0.5g

Distance

5Hz 0.32 s 50.1 cm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (seconds)

Accel

Free-Fall

How High Can I Jump?

Hold the sensor & jump

With a bandwidth of 10Hz and

With a bandwidth of 260Hz

Measure air time

Time when acceleration < 0.5g

Compute distance jumped

d =
1

2
a

t

2



2

=
1

8
at2

Bandwidth Time
|accel| < 0.5g

Distance

10Hz 0.33 s 13.34 cm

260Hz 0.40 s 19.6 cm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (seconds)

g's

Air Time

10Hz Bandwidth

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (seconds)

g's

Air Time

260Hz Bandwidth

Summary:

I2C Communications is actually pretty easy with a Raspberry Pi-Pico.

With it, you're reading and writing to registers.

Writing to registers

- Sets the bandwidth

- Sets the sampling rate

- etc

Reading registers

- Allows you to read the sensor's data

- Gives you calibration constants

- etc

Data sheets are really helpful

Tells you the address of the registers

Tells you what the registers do

Tells you what to write

Tells you how to interprit what you read

