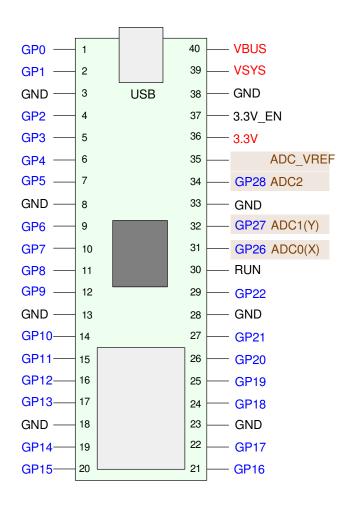
Acceleration & Light Sensors

ECE 476 Advanced Embedded Systems Jake Glower - Lecture #24

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Introduction:

The Pi-Pico has four 12-bit analog inputs


• Three are connected to the I/O pins

With these A/D inputs, you can

- Directly read sensors whose output is voltage
- Read sensors with resistance and current outputs (requires some circuitry).

This lecture looks at measuring acceleration and light, With these, we can

- Build a Magic 8-Ball,
- Measuring your Vertical Leap, and
- Build a solar tracker (electronic sunflower)

Analog Acceleration (ADXL335)

The ADXL335 is an accelerometer with

- 3-5V operation,
- Operable over a full +/- 30g range
- With three analog outputs:
 - x", y", z"
 - 0G reads 0.7V
 - Sensitivity = 0.15V / g

Scaling for m/s2:

- offset = 0.7V
- gain = 200 / 65535

Kiro&Seeu ADXL335 3-Axis Accelerometer Angular Transducer Sensor Module Analog Output Compatible with Ar-duino, (DXL335-MD-1P)

Brand: Kiro&Seeu

5.0 *****

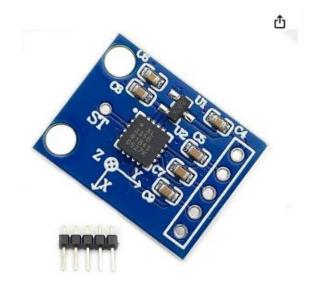
2 ratings | Search this page

\$12^{99}

*prime Two-Day

Coupon: Apply 5% coupon Shop items > | Terms

Save up to 5% with business pricing. Sign up for a free Amazon Business account


Brand Kiro&Seeu

Material Copper

Style Digital

Measuring Range ±30 g

UPC 767217089739

Python Code

The nice thing about analog sensors is they're easy to figure out

- Give it power and ground
- You can then read the outputs

The analog outputs can be read

- With a volt meter,
- With an oscilloscope, or
- With the A/D inputs

Add a scaling factor and offset to make the units m/s2

```
from machine import ADC
from time import sleep ms
a2d0 = ADC(0)
a2d1 = ADC(1)
a2d2 = ADC(2)
def Read ADXL335():
    k = 200 / 65535
    x1 = a2d0.read u16()
    y1 = a2d1.read u16()
    z1 = a2d2.read u16()
    Ax = k * (x1 - 13843)
    Ay = k * (y1 - 13779)
    Az = k * (z1 - 13843) - 3.6
    return([Ax, Ay, Az])
while (1):
    [Ax, Ay, Az] = Read\_ADXL335()
    print (Ax, Ay, Az)
    sleep ms(200)
```

Shell

Shen			
	X	Y	Z
	0.146	0.000	9.556
	-0.098	0.000	9.605
	0.000	-0.146	9.458

GY521 Digital Accelerometer

https://peppe8o.com/using-gyroscope-and-accelerometer-with-mpu6050-raspberry-pi-pico-and-micropython/

The GY-521 accelerometer is a digital accelerometer, capable of

- 3V to 5V operation
 - it will work with 3.3V
- +/- 2g up to +/- 16g accelerations
- +/- 250 to +/- 2000 degrees per second rotation
- Both I2C and SPI communications.

GY-521 MPU-6050 MPU6050 3-Axis Accelerometer Gyroscope Sensor Module 6-axis Accelerometer Gyroscope Sensor Module IIC I2C 3-5V for Arduino 5pcs

Visit the Teyleten Robot Store 4.0 ★★★★☆ ✓ 15 ratings | Search this page

\$1188 (\$2.38 / Item)

GY521 Hardware

- https://peppe8o.com
- Very good tutorial on using the GY-521 with a Pi-Pico
- I2C interface

In terms of wiring for I2C,

- Vcc = 3.3V
- GND = 0V
- SCL = GP01
- SDA = GP00

GY521 Software

https://peppe8o.com/using-gyroscope-and-accelerometer-with-mpu6050-raspberry-pi-pico-and-micropython/

Go to the Peppe80.com

- Download the driver libraries are loaded onto your Pi-Pico
 - imu.py
 - vector3d.py

You're then ready to read the acceleration and rotational rates

• see following code

The execution time is

- 1.96ms to read the acceleration in the XYZ direction
- 1.96ms to read the gyro (rotational velocities) about the XYZ axis

```
# Blog: https://peppe8o.com
# Date: Aug 25th, 2021
# Version: 1.0
from imu import MPU6050
import time
from machine import Pin, I2C
i2c = I2C(0, sda=Pin(0), scl=Pin(1), freq=400000)
imu = MPU6050(i2c)
while True:
     ax=round(imu.accel.x,2)
     ay=round(imu.accel.y,2)
    az=round(imu.accel.z,2)
    qx=round(imu.qyro.x)
    gy=round(imu.gyro.y)
    gz=round(imu.gyro.z)
    tem=round(imu.temperature,2)
    print (ax, ay, az, qx, qy, qz, tem, end="\r")
    time.sleep(0.2)
shell
x" y" z" gx gy gz temp
0.19 0.0 0.98 -2 0 -2 28.41
```

Magic 8-Ball

Now that we can measure acceleration, let's build a Magic 8-Ball

To operate the Magic 8-Ball,

- Shake the Magic 8-Ball
- Ask it a question, then
- Turn it over to see what the answer is.

Code

- Full code is on Bison Academy
- Lecture #24

The following code uses the analog accelerometer to measure the acceleration in the z-direction.

- Start with the z-axis pointing down
- Ask a question
- Shake the accelerometer up and down briskly three times, then
- Turn it over to get your answer.

```
Fortune = ['Signs point to yes']
def Read ADXL335():
    k = 200 / 65535
    z1 = a2d2.read u16()
    Az = k * (z1 - 13843) - 3.6
    return (Az)
print('Shake for a reading')
while (1):
    print('----')
    # Shake three times
    for i in range (0,3):
        #print('Shake #',i)
        while (Az < 20):
            Az = Read ADXL335()
        while (Az > 5):
            Az = Read ADXL335()
    #print('Your Fortune')
    N = randrange(20)
    print(Fortune[N])
    sleep(1)
```

Results:

• Shows off better in the video

Measuring your Vertical Leap

You can also measure how high you can jump:

- When at rest, you should have an acceleration of 9.8 m/s2 due to gravity
- When in free-fall, the acceleration you feel should drop to zero m/s2

By measuring how long you are experiencing zero g's, you should be able to

- Measure the duration of your jump, and then
- Calculate how high you jumped as

$$d = \frac{1}{2}at^2$$

where t is the time from your apogee to the ground, or

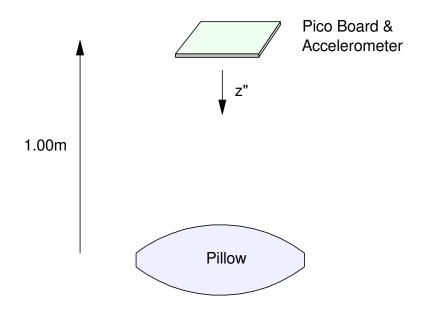
$$d = \frac{1}{2}a\left(\frac{t}{2}\right)^2$$

where t is the total time of your jump.

• Total time in free-fall (zero g's)

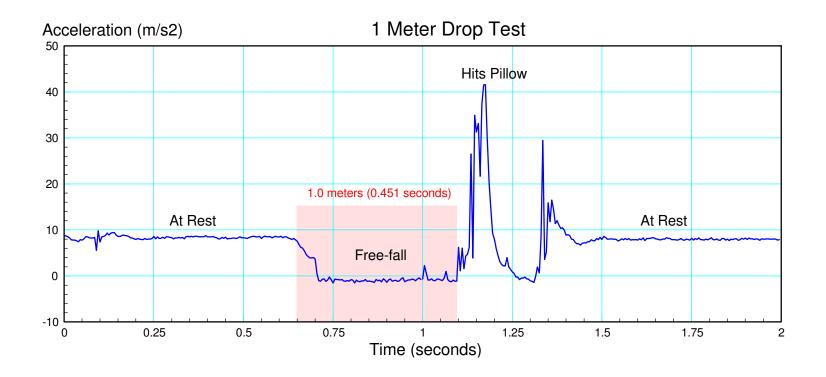
Free-Fall Test:

Start with Heart Beat code


- Replace sensor with the ADXL335
 - a digital one would work too

Check the code works

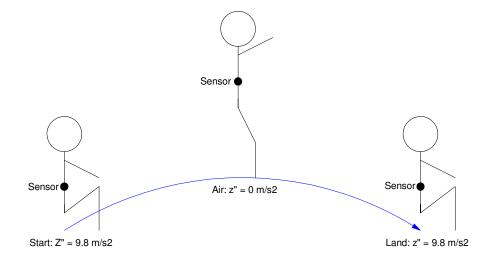
- Drop the board 1.00m
- Sample every 5ms for 2 seconds
- Record acceleration as it falls


You should see

- Acceleration = 0.00 while falling
- Time of fall corresponds to 1.00m

Free-Fall Results:

- Acceleration = 0 (ish) while in free fall
- Time with Az < 2.00 is 0.400 seconds
- Corresponds to a distance of 0.784m
 - sort of works


Jump Test:

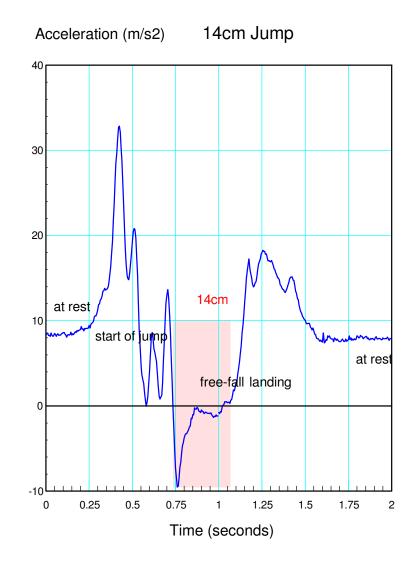
Repeat with the sensor on my waist

- Crouch down, getting ready
- Press GP15
 - Wait for a beep
- Jump as high as I can
 - about 14cm
 - hey, I'm getting old

Record the acceleration for 2 sec

• Sampling rate = 5.00ms

Result: 14cm Jump


• Estimate from observation

From the data:

- "air time": Az < 1.00 m/s2
- Start of jump: 0.735 seconds
- End of jump: 1.080 second
- Duration = 345ms
- Height = 14.58 cm

which seems about right.

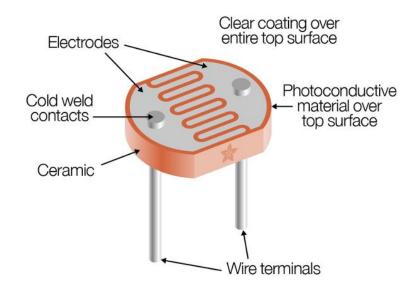
With a little more coding, the time of flight can be measured and displayed automatically.

New Topic: Measuring Light

CdS Light Sensors

- Adafruit PDV-P8001
- Photo from Adafruit 161 Light Sensor

Recall...


- A thermistor is a sensor
 - Resistance changes with temperature

Replace the thermistor

• A sensor where R changes with light and you have a light sensor

Cadmium Sulfide (CdS) is a chemical whose resistance changes with light level.

This makes CdS a light sensor

R vs. Lux Relationship

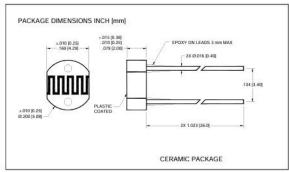
In general:

$$R = a \cdot lux^{-b}$$

Find $\{a, b\}$ by

- Take two measurements
 - Two equations and two unknowns
- Look at the data sheets.

PDV-P8001 CdS from Adafruit


- At 10 Lux, 3k < R < 11k
- Sensitivity (b term)

$$\frac{\ln(R_{100}) - \ln(R_{10})}{\ln(E_{100}) - \ln(E_{10})} = 0.6$$

CdS Photoconductive Photocells PDV-P8001

FEATURES

- · Visible light response
- · Sintered construction
- · Low cost

DESCRIPTION

The PDV-P8001 are (CdS), Photoconductive photocells designed to sense light from 400 to 700 nm. These light dependent resistors are available in a wide range of resistance values. They're packaged in a two leaded plastic-coated ceramic header.

APPLICATIONS

- · Camera exposure
- Shutter controls · Night light Controls

ABSOLUTE MAXIMUM RATING (TA)= 23°C UNLESS OTHERWISE NOTED

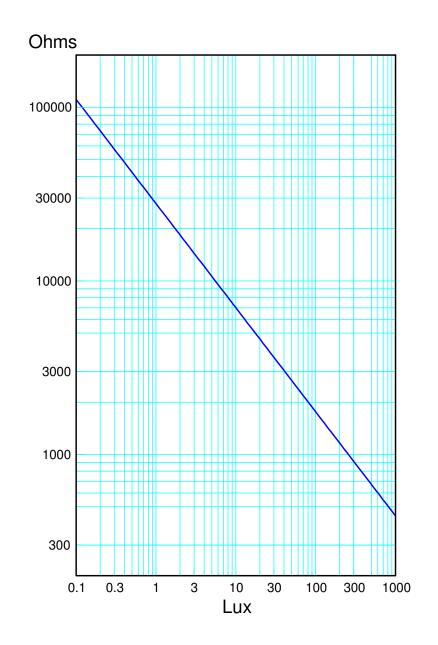
SYMBOL	PARAMETER	MIN	MAX	UNITS
V _{pk}	Applied Voltage		150	٧
P _{d Apa/At}	Continuous Power Dissipation		100	mW/°C
To	Operating and Storage Temperature	-30	+75	°C
Ts	Soldering Temperature*		+260	°C

^{* 0.200} inch from base for 3 seconds with heat sink

ELECTRO-OPTICAL CHARACTERISTICS RATING (TA)= 23°C UNLESS OTHERWISE NOTED

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	MIN	TYP	MAX	UNITS
R _D	Dark Resistance	After 10 sec. @ 10 Lux @ 2856 °K	0.2			ΜΩ
Ri	Illuminated Resistance	10 Lux @ 2856 °K	3		11	ΚΩ
S	Sensitivity	LOG(R100)-LOG(R10)** LOG(E100)-LOG(E10)***		0.6		Ω/Lux
λrange	Spectral Application Range	Flooded	400		700	nm
λpeak	Spectral Application Range	Flooded		520		nm
t,	Rise Time	10 Lux @ 2856 °K		55		ms
T _f	Fall Time	After 10 Lux @ 2856 °K		20		ms

[&]quot;R100, R10: cell resistances at 100 Lux and 10 Lux at 2856 °K respectively. ***E100, E10: luminances at 100 Lux and 10 Lux 2856 °K respectively


This allows you to solve for {a, b}

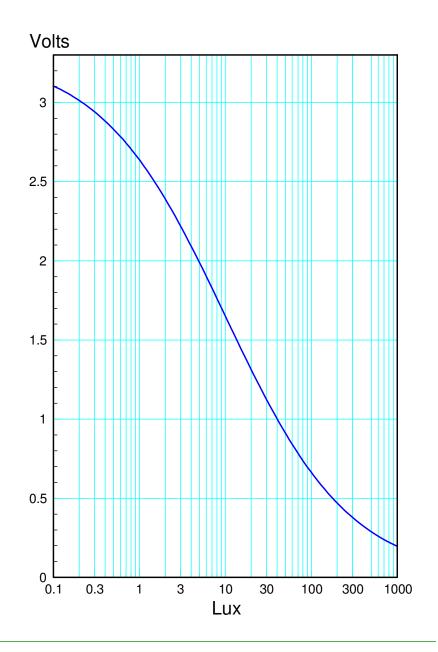
$$7000\Omega = a \cdot (10 \ Lux)^{-0.6}$$

$$a = 27.873\Omega$$

meaning

$$R \approx 27,873 \cdot (lux)^{-0.6}$$

Add a voltage divider


• Assume R = 7k (mid-band resistance)

```
>> Lux = logspace(-1,3,100)';
>> R = 27873 * Lux .^ -0.6;
>> V = R ./ (R + 7000) * 3.3
>> semilogx(Lux, V)
>> xlabel('Lux')
>> ylabel('Ohms')
```

By measuring voltage, you can calculate the light level

Note:

- This setup works best for 1..100 Lux
- Larger R tunes the sensor for lower light levels
- Smaller R tunes the sensor for higher light levels

PhotoVoltaic (PV) Light Sensors

Another way to measure light is to use a photovoltaic solar cell.

- Convert sunlight to electricity
- Power (V*I) proportional to solar intensity (Watts / m2)

Solar cells are actually pretty efficient:

- 0.2% 2% typical plants
- 1% 2% typical crops
- 8% sugar cane
- 11% max possible with photosynthesis
- 13% 23% commercial PV
- 39% best research grade PV

SUNYIMA 10Pcs 3V 120mA Micro Solar Panels
Cells DIY Solar Epoxy Plate Electric Toy Materials
Photovoltaic Cells Charger
60mmx55mm/2.36"x2.16"

Amazon's Choice in Solar Panels by SUNYIMA

Prime Day Deal
-20% \$1279
Typical price: \$45.99 ®

Output of PV Cell in sunlight

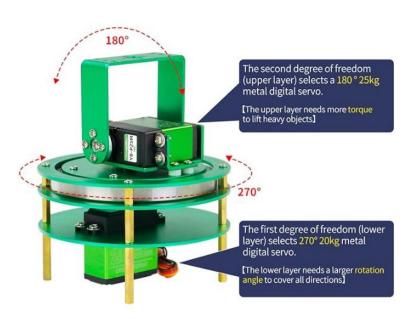
• Nominal Sunlight = 1370 W/m2 (NASA)

PV cell can measure solar intensity

- Add a 47 Ohm resisistor as a load
- Measure voltage at different times of day
- Compute the energy produced
- Scale by cell's efficiency and area to get solar intensity

Condition July 14, 2024	Voltage	Power 47 Ohm resistor	Energy Density
Dawn (8am)	2.08V	92.05mW	48%
Noon	3.00V	191mW	100%
Evening: 6pm	2.758V	161.8mW	84.7%
Dusk: 9pm	0.15V	0.47mW	0.2%

Fun with Light Sensors


Yahboom 2-dof kit from Amazon

With a light sensor and a pan-tilt servo motor, you can build a

- A solar tracker
 - Point solar cells directly at the sun
 - Improves energy output
- An electronic sunflower
 - Point directly at the sun
 - Follow the sun throughout the day

left as a homework or term project assignment

Two Degrees of Freedom Rotation

Roll over image to zoom in

Summary

Acceleration sensors detect motion

- Both analog and digital are available
- Allow you to detect orientation, shaking, etc

Light sensors detect light levels

- Both resistive and voltage outputs available
- Allow you to detect room conditions
 - Light, Dark
- Allow you to track an object
 - Follow the sun

Both are pretty easy to interface to a Pi-Pico

References

Pi-Pico and MicroPython

- https://github.com/geeekpi/pico_breakboard_kit
- https://micropython.org/download/RPI_PICO/
- https://learn.pimoroni.com/article/getting-started-with-pico
- https://www.w3schools.com/python/default.asp
- https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
- https://docs.micropython.org/en/latest/library/index.html
- https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

• https://wiki.52pi.com/index.php?title=EP-0172

Other

- https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/
- https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/
- https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/
- https://randomnerdtutorials.com/projects-raspberry-pi-pico/
- https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/