

Temperature Sensors

& Recursive Least Squares

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #21
Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

The next few lectures will look at reading sensors to a Pi-Pico

Sensors allow the Pi-Pico know what's happening in the real world

note: There is an entire course on sensors called Instrumentation

This lecture focuses on measuring temperature using

Analog sensors:

- Thermistors

- TMP36

Digital Sensors

- DS18B20

With these

Measure the temperature of a cup of how

water as it cools off

Compute the thermal time constant in real

time using recursive least squares

Measuring Resistance:

The A/D on the Pi-Pico measures voltage

12-bit A/D

0V to 3.3V

To measure a resistance

Convert resistance to voltage

Voltage divider works

V = 


R

R+R0


 3.3V

By measuring V, you can compute R

R = 


V

3.3−V

R0

Pi-PicoAN2

3.3V

R

R0

V

Resolution of Ohm-Meter

Depends upon the resistor values.

Assume R0 = R = 1k

The nominal voltage you read is 1.65V

V = 


1000

1000+1000

 3.3V = 1.65V

The A/D has 12-bits

The smallest change in voltage you can detect is

dV = 3.3V

4095
= 805.9µV

The smallest change in resistance you can detect is

What produces a 805.9uV change in voltage

V = 1.65V + 805.9µV

R = 


V

3.3−V

 1000 = 1000.977Ω

dR = 0.977Ω

Temperature Sensors: Thermistor

Once you can measure resistance, you can measure pretty much any sensor

whose output is resistance.

A thermistor is one such sensor.

A thermistor is a piece of silicon

Insulator at 0K

Conductor above 0K

As temperature goes up

More electrons escape their covalent bonds

Each electron also creates a hole

More charge carriers means less resistance

Thermistor Models

As temperature goes up, resistance drops

General model (K = Kelvin)

R = exp a + b

K
+ c

K2
+ d

K3
+ ...

More terms gives a better model over a wider range

2-Term Model:

R = exp a + b

K



R = R25 ⋅ exp 
B

T+273
− B

298



where

T is the temperature in degrees C (T + 273 = K),

R25 is the resistance at 25C, and

B is a constant

If you look up the data sheets for a thermistor, you can find the B parameter

Digikey Part Number: 495-2156-ND

R25: 1k

B25/100: 3930

Dissipation Factor: 3.5 mW/K

This gives you the model for the

thermistor:

R = 1000 ⋅ exp 
3930

T+273
− 3930

298

Ω

-40 -30 -20 -10 0 10 20 30 40
0

5000

10000

15000

20000

25000

30000

35000

40000

Degrees C

Ohms

R(25C) = 1k

Add a voltage divider

V = 


R

R+1000

 3.3V

Solving backwards

R = 


V

3.3−V

 1000Ω

T =





3930

ln 
R

1000

 +

3930

298






 − 273

Net: You can compute the temperature

given a voltage measurement

-40 -30 -20 -10 0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

Degrees C

Volts

Resolution: The resolution is again the smallest change in temperature you

can detect with the 12-bit A/D on the Pi-Pico.

Assuming 25C

R = 1000Ω

V = 1.65V

The smallest change in voltage you can detect is 805.9uV.

V = 1.65V + 805.9µV

When R = 1000 Ohms, the smallest change in resistance you can detect is

0.977 Ohms

R = 1000.977Ω

The corresponding temperature is

T =





3930

ln 
R

1000

 +

3930

298






 − 273

T = 24.9779C

The difference from 25C is the resolution in temperature:

dT = T − 25 = −0.02207C

With this setup, a Pi-Pico can measure temperature with a resolution of

0.022 degrees C.

Example: Measure the temperature of an LED light bulb

20W LED bulb

Measure temperature when it's turned on

How hot does the bulb get?

How long does it take to warm up?

Hardware: Use a thermistor

Nominal = 10k @ 25C

Use a votlage divider

7.5k

Goal is to get 1.65V output

(max sensitivity)

Pi-PicoAN2

Thermistor

10k

7.5k

3.3V

Software:

Uses timer interrupts to sample once per second

Measures the voltage of AN2, and

Computes the corresponding temperature

while(time < 300):

 while(flag == 0):

 pass

 flag = 0

 V = kV * a2d2.read_u16()
 R = V / (3.3-V) * 7500
 Temp = 3930 / (log(R/10000) + (3930/298)) - 273

 print(time, V, R, Temp)

 file1.write(str('{: 6.1f}'.format(time)) + " ")

 file1.write(str('{: 7.4f}'.format(Temp)) + " ")

 file1.write("\n")

 time += T

Result:

Temperature rises as a decaying

exponential

1st-order differential equation

heat equation

There's considerable noise in the data

Long wires act as antennas

Noise could be reduced

Use twisted pair wires

Use shielded twisted pair wires

Keep leads short.

0 50 100 150 200 250 300

25

30

35

40

45

50

Time (seconds)

Degrees C LED Light Bulb

Temperature Sensor: TMP36

Another way to measure temperature is to

measure the voltage drop across a diode.

From Electronics, the voltage drop across

a diode is a function of temperature

- ECE 320 lecture #5

Vd = VT ⋅ ln 
NAND

ni
2




The voltage drop vs. temperature is

almost linear

Add some circuitry to get the voltage to

go up +10mV / degree C

TMP36
-30 -20 -10 0 10 20 30

0.6

0.65

0.7

0.75

0.8

Degrees C

Vd (Volts)

3.3V

1k

Vd

+

-

TMP36 (cont'd)

From the data sheets for a TMP36 (www.Digikey.com),

Operating voltage: 2.7V to 5.5V

- i.e. 3.3V operation works

The output at 25C is 750mV

The sensitivity is +10mV / degree C

Linearity is within 0.5C over a range of -40C

to +125C

The output voltage should be:

-40C 25C +125C

100mV 750mV 1.750V

Based upon the voltage, you can then compute the temperature:

T = 100V − 50

To interface with a Pi-Pico, you can connect it directly to the A/D input.

This gives a resolution of 0.08 degrees C:

A/D resolution = 805.9uV

 resolution in degrees C


805.9µV

10mV/C

 = 0.08059C

Pi-PicoAN2

V+Vs

Vout

GND

TMP36

3.3V

View from Bottom

Interface for a TMP36 temperature sensor to a Pi-Pico

TMP36 Code:

Recording temperature is about the

same as before

Only change is how you compute

temperatgure

while(time < 300):

 while(flag == 0):
 pass

 flag = 0

 V = kV * a2d2.read_u16()
 Temp = 100.0*V - 50

 print(time, V, Temp)

 file1.write(str(time) + " ")

 file1.write(str(Temp) + " ")

 file1.write("\n")

 time += T

Temperature of an Incandescent Light Bulb

Just for fun, let's measure the

temeperature of an incandescent light

bulb

60W light

2% efficient

Again, temperature rise is a decaying

exponential

1st-order differential equation

heat equation

There is still considerable noise

Long wires

No shielding

Not using twisted pair wires

0 25 50 75 100 125 150 175

20

30

40

50

60

70

80

90

100

Time (seconds)

Degrees C Incandescent Light Bulb

DS18B20 Temperature Sensor

Temperature sensor with a digital interface

Easier to get readings

Less noise (shorter leads to uP)

Requires drivers

Specifications:

-55C to +125C

2.5V to 5.5V operation

With a resolution of 0.0625C (12-bit)

Each DS18B20 has a unique 64-bit serial

code.

Can have several on a bus

Can read each one separately

DS18B20 Hardware

Add power, ground, and a signal from the Pi-Pico

Include a pull-up resistor on the data line

Top

DQ VddGND

3.3V

3.3V

GP4Pi-Pico

4.7k

DS18B20

DS18B20 Software

Included in MicroPython

onewire

ds18x20

Connect the sensor to GP4

any I/O pin is OK

Scan for sensors

multiple sensors OK

Read each sensor

750ms delay for 12-bit read

Reading is for previous

conversion

import onewire, ds18x20
from machine import Pin

from time import sleep, sleep_ms

ds_pin = Pin(4)
ds_sensor =
ds18x20.DS18X20(onewire.OneWire(ds_pin))

roms = ds_sensor.scan()
print('Found DS devices: ', roms)

while(1):

 ds_sensor.convert_temp()
 sleep_ms(750)

 Temp = ds_sensor.read_temp(roms[0])
 print(Temp)

Setting the sampling rate to

1.00 second

Use a timer interrupt

Readings are for previous

conversion

- 750ms delay

Note:

You can remove the 750ms

delay if you swap the order

of read and convert

Result is the temperature the

previous sample (1 second

ago)

Frees up time to do other

stuff

:

def tick(timer):

 global flag

 flag = 1

Time = Timer()

Time.init(freq=1/T, mode=Timer.PERIODIC,
callback=tick)

sec = 0

while(sec < 1800):

 while(flag == 0):

 pass

 flag = 0

 sec += T

 ds_sensor.convert_temp()

 sleep_ms(750)
 Temp = ds_sensor.read_temp(roms[0])

 print(sec, Temp)

Temperature of a Hot Cup of Water

Measure the temperature of a cup of

hot water

Record temeprature every second

Using a DS18B20 sensor

Note:

The recorded temperature is very

clean (very little noise),

- Short leads from sensor to uP

- Once data is digital, noise has little

impact

- One reason sensors are going digital

After 100 seconds, the temperature

decays as

T = b∗ ⋅ exp(at) + Tamb

0 200 400 600 800 1000 1200 1400 1600 1800

20

30

40

50

60

70

80

Time (seconds)

Degrees C

T(ambient)

T(cup)

Least Squares

Given the data, find the thermal time constant

TC = -1/a seconds

Tells you how good your coffee cup is

The thermal time constant can be found by modeling the temperature as

T = b∗ ⋅ eat + Tamb

or equivalently

T − Tamb = exp (at + b)

where {a, b} are constants.

Taking the log of both sides

An equation which is linear in t:

ln (T − Tamb) = at + b

This can be solved using least squares. Placing this in matrix form:













ln (T0 − Tamb)

ln (T1 − Tamb)

ln (T2 − Tamb)
.
..













=













t0 1

t1 1

t2 1
.
..

.

..


















a

b






or

Y = BA

The least squares solution for {a, b} is

A = (BTB)
−1

BTY

In Matlab:
>> Data = [<paste data from previous code >];

>> t = Data(:,1);

>> T = Data(:,2);

>> Tamb = 24.616;

>> B = [t, t.^0];

>> A = inv(B'*B)*B'*log(T - Tamb)

 -3.1563e-004

 4.2630e+000

>> a = -1/A(1)

a = 3.1682e+003

>> b = A(2)

b = 4.2630e+000

>> plot(t,T,t,exp(-t/a+b) + Tamb);

The thermal time constant is 3168.2

seconds for this coffee cup.
0 200 400 600 800 1000 1200 1400 1600 1800

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

Time (seconds)

ln(T - Tamb)

Measured

Linear Curve Fit

Note: You could bypass Matlab and do all of the calculations using Python

- but two problems arise:

With this method, there are a lot of computations to do every sample, and

The initial measurements had errors

To solve these problems,

Recursive least-squares will be used to simplify calculations (next section), and

A forgetting factor will be added to weight more recent data more heavily (the

following section)

Recursive Least Squares

Assume you are trying to find a linear curve fit

y = ax + b

Place your data in matrix form (assume four data points for now):













y0

y1

y2

y3













=













x0 1

x1 1

x2 1

x3 1


















a

b






The least squares solution is:






a

b




 =















x0 x1 x2 x3

1 1 1 1


















x0 1

x1 1

x2 1

x3 1






















−1






x0 x1 x2 x3

1 1 1 1


















y0

y1

y2

y3













or






a

b




 =






Σ xi
2 Σ x i

Σ xi n






−1





Σ xiyi

Σ y i






In Python, you only need to keep track of four terms to create B and Y

B =





Σ xi
2 Σ xi

Σ x i n






Y =





Σ xiy i

Σ yi






or equivalently, in a recursive manner:

Bi = Bi−1 +





x i
2

xi

xi 1






Yi = Yi−1 +





x iyi

yi






Recursive Least Squares in

Python

Keep updating B and Y

From these, you can compute

A = {a, b}

x = 0

Tamb = 19.38

B = [[0.01,0],[0,0.01]]

Y = [[0],[0]]

while(1):

 while(flag == 0):

 pass
 flag = 0

 ds_sensor.convert_temp()

 sleep_ms(750)

 Temp = ds_sensor.read_temp(roms[0])

 x += 1

 y = log(Temp - Tamb)

 matrix.add(B, [[x*x, x], [x, 1]])

 matrix.add(Y, [[x*y], [y]])

 Bi = matrix.inv(B)
 A = matrix.mult(Bi, Y)

 a = A[0][0]

 b = A[1][0]

 print(x, a, b)

Note the following:

The slope varies

- The system is nonlinear

- Evaporation adds additional heating at the start

- Adding a lid would reduce this effect

As time goes on, you start to ignore the most

recent data

- Treated the same as any other data point

0 200 400 600 800 1000 1200 1400 1600 1800

2500

2750

3000

3250

3500

3750

4000

4250

4500

Time (seconds)

Time Constant (seconds)

Recursive Least Squares with a Moving Window

If the system is changing, you may want to use only recent data

Ignore really old data

Using a moving window allows this

Do a least squares curve fit using only

the last N data points

Requires you to keep track of the last N

data points

Requires more computations

0 200 400 600 800 1000 1200 1400 1600 1800

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

Time (seconds)

ln(T - Tamb)

Weightings

1.00

0.00

Raw Data

Linear Curve Fit

In code

Create a buffer which saves the last 100 data points

Recompute B and Y using these last 100 data points each sample,

From B and Y, recompute the least-squares curve fit each sample.

A circular stack saves time (so you don't have to constantly push data onto a

stack each sample). This gives a more efficient way to compute B and A

Bi = Bi−1 +





x i
2

xi

xi 1




 −






xi−100
2

x i−100

xi−100 1






Yi = Yi−1 +





x iyi

yi




 −






xi−100y i−100

yi−100






Python Code

Keep the last 100 data

points in a circular stack

Update B and Y each time

point

- Remove data point (i-100)

- Add data point (i)

while(1):

 while(flag == 0):

 pass

 flag = 0

 ptr = (ptr + 1) % 100

 time += 1

 ds_sensor.convert_temp()

 sleep_ms(750)

 Temp = ds_sensor.read_temp(roms[0])

 x = X[ptr]

 Y = Y[ptr]

 matrix.subtract(B, [[x*x, x], [x, 1]])

 matrix.subtract(Y, [[x*y], [y]])

 X[ptr] = x = time

 Y[ptr] = y = log(Temp - Tamb)

 matrix.add(B, [[x*x, x], [x, 1]])

 matrix.add(Y, [[x*y], [y]])

 if(time >= 100):

 Bi = matrix.inv(B)

 A = matrix.mult(Bi, Y)

Time Contant with a Moving Window

By using a moving window

The slope is based upon the last 100 data

points

Making the results more responsive to

changes in the system,

But

There is more noise

(less data is being used)

0 200 400 600 800 1000 1200 1400 1600 1800

2500

2750

3000

3250

3500

3750

4000

4250

4500

Time (seconds)

Time Constant (seconds)

Recursive Least Squares with a Forgetting Factor

A similar scheme uses an exponential weighting factor:

 Weight(k) = αk 0 < α < 1

where

 is how many samples in the past the data was collected andk

 is a forgetting factorα

0 200 400 600 800 1000 1200 1400 1600 1800
3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

Time (seconds)

ln(T - Tamb)

Weightings

1.00

Raw Data

Linear Curve Fit

This actually simplifies the code

You no longer need a buffer storing all of the old data

All you need is the resulting B and Y matrices:

The long way to compute B and Y are:

Bk = Σ
n=0

k

αk−n 




xn
2 xn

xn 1






Yk = Σ
n=0

k

αk−n 




xnyn

yn






A shorter, recursive way to compute B and Y are

Bk = αBk−1 +





xk
2

xk

xk 1






Yk = αYk−1 +





xkyk

yk






The constants are then

A =





a

b




 = B−1Y

For example, let

α = 0.995

- Old data is discarded by 0.5% per sample

Old datas is ignored:

w = 1.000 k = 0

w = 0.61 k = 100

w = 0.37 k = 200

w = 0.22 k = 300

w = 0.13 k = 400

etc

0 200 400 600 800 1000 1200 1400 1600 1800

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

Time (seconds)

ln(T - Tamb)

Weightings

1.00

Raw Data

Linear Curve Fit

Thermal Time Constant

By weighting more recient data more heavily, changing time constants can

be captured

With less noise due to using more data

0 200 400 600 800 1000 1200 1400 1600 1800
2500

2750

3000

3250

3500

3750

4000

4250

4500

Time (seconds)

Time Constant (seconds)

Summary:

Temperature is pretty easy to measure.

Thermistors and thermal diodes output an analog signal, which can be read by

the 12-bit A/D on the Pi-Pico. This along with some computations allow you to

determine the temperature.

Digital temperature sensors allow you to read temperature without the need of

an A/D conversion. These also have the advantage of returning temperature

rather than a raw signal which needs to be converted to temperature.

Once you can measure temperature, you can do all sorts of things, like

measure the thermal time constant of a coffee cup as well as other things.

References
Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

