
Text Files & Energy in a Battery

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #20
Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

The Pi-Pico has 264k on-chip SRAM. This allows you to

Create a text file which controls the Pi-Pico's operation

Write to a text file, saving your data

This lecture covers

How to open and close text files

Reading from text files

String commands and parsing strings

Reading a text file to play a tune

Writing to text files, and

Measuring the energy in a rechargeable battery

Rechargeable Batteries from Amazon: How much energy to they really have?

Opening & Closing Text Files

Opening a file: The general syntax to open a file in Python is:

file = open("File_Name", "Access_Mode")

Access Mode can take on several values:
Access
mode

Function

"r" Default mode
Open a text file for reading.

Pointer is placed at the start of the file.
Results in an error if the file does not exist

"a" Open a text file for appending.
Pointer is placed at the end of the file.
Creates a new file if it does not exist

"w" Open a text file for write-only.
Create a new file if one does not already exist.

Clear out the contents of the existing file.

"x" Create a new file
Returns an error if the file already exists

The file can also be specified as a text file or a binary file (i.e. an image)

File Type Function

"t" Text file (default)

"b" Binary file (image)

Closing a file: Once finished, files should always be closed

file.close()

Reading From a Text File

Text files are read as strings - regardless of whether the contents are actually

numbers or text. When you read a text file, you can read some or all of the

file

Command Result

Data = f.read(5) Read the next five characters into text string
Data

Data = f.readline() Read the next line into Data

Data = f.readlines() Read the entire file into an array Data.
Each line is stored in a different entry: Data[0],

Data[1], etc

Data = f.read() Read the entire file into a text string, Data
Carriage returns and line feeds show up as /n/r

For example, assume a text file contains the following information:

readme.txt

Three rings for the Elven-kings under the sky
Seven for the Dwarf-lords in their halls of stone,

Nine for the Mortal Men doomed to die

This file can be read in its entirety

Program Window

f = open("readme.txt", "rt")

Data = f.read()
print(Data)

f.close

Shell

Three rings for the Elven-kings under the sky
Seven for the Dwarf-lords in their halls of stone,

Nine for the Mortal Men doomed to die

>>> Data

'Three rings for the Elven-kings under the sky\r\nSeven

for the Dward-lords in their halls of stone\r\nNone for

the Mortal Men doomed to die\r\n'

Note that

The file is stored as a text string

\r is a carriage return

\n is a newline command

You can also read this file line by line

Program Window

f = open("readme.txt", "rt")

Data = f.readlines()
n = len(Data)

for i in range(0,n):

 print(i, Data[i])

f.close

Shell

0 Three rings for the Elven-kings under the sky

1 Seven for the Dwarf-lords in their halls of stone,

2 Nine for the Mortal Men doomed to die

>>> Data[0]

'Three rings for the Elven-kings under the sky\r\n'

String Commands and Parsing Strings

One way to pass data to a Python program is through a text file.

list of numbers to graph

list of music notes to play a song.

Typically, the data is separated by commas, spaces, or tabs

Search for these to find the fields

Example: National Sea and Ice Data Center (NSIDC):

Arctic Sea Ice Extent

https://nsdic.org/arcticseaicenews/sea-ice-tools/

1979 7.051 16.342

1980 7.667 16.041

1981 7.138 15.632

:

Parsing Text Files
pull out fields

readlines()

reads in an entire line

strip()

removes spaces at the start and end

replace()

replaces tabs and commas with spaces

replaces double spaces with single

find()

locate where the spaces are

determines the fields

X[0:m]

field (type-string)

float()

Convert to a floating point number

def Parse(X):

 X = X.strip()

 X = X.replace(',',' ')

 X = X.replace('\t',' ')

 for i in range(0,10):

 X = X.replace(' ',' ')

 ncol = X.count(' ') + 1
 Y = [0]*ncol

 for i in range(0,ncol):

 m = X.find(' ')

 if(m>0):

 Y[i] = float(X[0:m])

 else:

 Y[i] = float(X)

 X = X[(m+1):]

 return(Y)

Data = '1979 7.051 16.342'
Y = Parse(Data)

print(Y)

[1979.0, 7.051, 16.342]

Plotting a Text File
SeaIce.txt has three columns

- Year, min(Ice), max(Ice)

Read in the file

Plot ice level vs. year

Y is read as a Nx3 matrix

Transpose to pull out columns

Plot displays the data

scaled to max & min

import LCD

import matrix

def Parse(X):

 :

f = open("SeaIce.txt", "rt")
Data = f.readlines()

f.close()

n = len(Data)

Y = []

for i in range(0,n):

 Y.append(Parse(Data[i]))

Y = matrix.transpose(Y)

Navy = LCD.RGB(0,0,5)

White = LCD.RGB(100,100,100)
LCD.Init()

LCD.Clear(Navy)

LCD.Plot(Y[0],[Y[1],Y[2]])

LCD.Title('Arctic Ice', White, Navy)

Resulting Plot
Arctic sea ice

Plotting data from a text file

Playing a Tune from a Text File
Example: Mario Brothers Tune

file Mario_Bros.txt

Text files can also contain a tune to play

Each line contains

The note,

The octave, and

The duration of the note

- in 16th's of a beat:

E4,2

E4,2

E4,4

0,2

C4,2

E4,4

G4,4
0,4

G3,4

0,4

Parse Routine

Pull out the note

First field

Pull out the duration

Second field

Write a test program

Check each element of Y

Contains note and duration

Parse subroutine

def Parse(X):

 X = X.strip()

 X = X.replace(',',' ')

 X = X.replace('\t',' ')

 for i in range(0,10):

 X = X.replace(' ',' ')

 m = X.find(' ')

 Note = X[0:m]

 Dur = int(X[(m+1):])

 return([Note,Dur])

f = open("Mario_Bros.txt", "rt")
Data = f.readlines()

f.close()

n = len(Data)

Y = []

for i in range(0,n):

 Y.append(Parse(Data[i]))

print(Y)

Shell

[['E4',2], ['E4',2], ['E4',4],

['0',2], ['C4',2], ['E4',4],

['G4',4], ['0',4], ['G3',4],

['0',4]]

Convert notes to frequency
Note C0 C#0 D0 E0 F0 F#0 G0 G#0 A0 A#0 B0

Hz 16.35 17.32 18.35 20.6 21.83 23.12 24.5 25.96 27.5 29.14 30.87

Freq subroutine

Start with the frequency

Assume zeroth octave

Scale by 2**n

n = octave

Write a test routine

Verify frequencies are correct

def Freq(a):

 n = len(a)

 Note = a[0:n-1]

 Octave = a[n-1]

 Hz = 0

 if(Note == 'C'):
 Hz = 16.35

 elif(Note == 'C#'):

 Hz = 17.32

 elif(Note == 'D'):

 Hz = 18.35

 :

 if(Hz > 0):

 Hz = Hz * (2 ** int(Octave))

 return(Hz)

print('A3 = ', Freq('A3'), ' Hz')

print('D4 = ', Freq('D4'), ' Hz')
print('G#5 = ', Freq('G#5'), ' Hz')

shell

A3 = 220.0 Hz

D4 = 293.6 Hz

G#5 = 830.72 Hz

Playing a Tune

Finally, reuse the Play(Hz, Dur)

Hz = frequency

Dur = duration in 1/16 beat

Spin through a text file to play a

tune

More impressive in the video

 :

def Play(Hz, Eighths):

 if(Hz > 0):

 Spkr.freq(round(Hz))

 Spkr.duty_u16(32768)

 else:

 Spkr.duty_u16(0)
 sleep_ms(75 * Eighths - 50)

 Spkr.duty_u16(0)

 sleep_ms(50)

f = open("Mario_Bros.txt", "rt")

Data = f.readlines()

f.close()

n = len(Data)

Y = []

for i in range(0,n):

 Y.append(Parse(Data[i]))

for i in range(0,n):

 Hz = Freq(Y[i])

 Dur = Y[i][1]

 print(i, Hz, Dur)

 Play(Hz, Dur)

Writing to a Text File

You can also write to a text file

Save data for later analysis

Voltage of a discharging battery

Open Options

"a" append to file.

- Create new file if needed

"w" clear current file

- Create new file if needed

File Write

 Writes a text string to a file

\n = carriage return

\t = tab

file1 = open("readme.txt", "w")

print('File Opened')

for i in range(0,6):

 file1.write(str(i))

 file1.write("x")

 file1.write(str(i))

 file1.write("\n")

file1.close()

print('File Closed')

readme.txt

0x0

1x1

2x2

3x3

4x4

5x5

Note: To open readme.txt, from Thonny,

Click on File Open

Select Raspberry Pi Pico

Select readme.txt

After writing to a file, the file on the Pi-Piico board can be opened using Thonny

Example: Reading A/D channels

Read three A/D inputs

Sample every 100ms

- A/D read takes 100us

- Write to file takes 1770us

Write these to a file

- Separate data with spaces

Terminate with a carriage return

- "\n"

import machine, time

a2d0 = machine.ADC(0)

a2d1 = machine.ADC(1)

a2d2 = machine.ADC(2)

kV = 3.3 / 65535

file1 = open("readme.txt", "w")

for i in range(0,10):

 V0 = a2d0.read_u16() * kV

 V1 = a2d1.read_u16() * kV

 V2 = a2d2.read_u16() * kV

 file1.write(str(i) + " ")

 file1.write(str(V0) + " ")

 file1.write(str(V1) + " ")

 file1.write(str(V2) + "\n")

 time.sleep(0.1)
file1.close()

file readme.txt

0 1.3925 1.4231 0.0556

1 1.3893 1.4215 0.0548
2 1.3869 1.4231 0.0556

3 1.3901 1.4231 0.0548

:

Energy in a Battery: Hardware

Next, to measure the energy in a rechargeable battery,

Connect the battery to a 10 Ohm resistor, and

Measure the voltage with a Pi-Pico

For 9V batteries

- Add a divide by 3 circuit

- increase R to 47 Ohms

 I =
V

R
P =

V2

R

10

GND

AN2

Pi-Pico

200k

100k
battery

only included for 9V battery

Expected Battery Life:

Based upon battery rating, the time of the experiment should be:

Battery
Type

Voltage mAh
(rated)

R
(Ohms)

mA @ R Hours

AAA 1.5V 750 10 150 5.00h

AA 1.5V 2,400 10 150 16.0h

9V 9.0V 600 47 191.48 3.13 h

One reason to save the data to a text file

I don't want to wait around for 16 hours

If you save data every second, 16 hours is 57,600 data points

Pi-Pico doesn't have that much memory

Energy in a Battery: Software

Measure the voltage every second

Display on the Pico board

Save to a file every 60 seconds

Stop when < 0.5V

Battery is discharged

Code Listing

abbreviated

full code on Bison Academy

Interupts set the sampling rate

one second

Every second

Measure the voltage

Compute Watts, Joules, mAh

Display every second

- Write to file every 60 seconds

When done

Close the file

def tick(timer):

 global flag

 flag = 1

T = 1

Time = Timer()

Time.init(freq = 1/T,
mode=Timer.PERIODIC, callback = tick)

file1 = open("Battery_Test.txt", "w")

while(Volts > 0.5):

 while(flag == 0):

 pass

 flag = 0

 Volts = (a2d2.read_u16() * kV)

 mA = Volts / 10 * 1000

 mAh += mA * T / 3600

 Watts = (Volts ** 2) / 10
 Joules += Watts * T

 file1.write(str(time))

 file1.write(str(Volts))

 file1.write(str(mAh))

 file1.write(str(Joules))

 file1.write("\n")

 time += 1

file1.close()

Rechargeable AAA Battery
Rated Energy: 750mAh

Experiment:

Fully chargethree AAA batteries

One by one, place in a battery holder

- Discharge across a 10 Ohm resistor

Record the voltage until it drops below

0.5V

Results:

Battery mAh Joules

1 879.53 3486.54

2 886.80 3444.23

3 880.86 3547.31

Analysis: Find

The 90% confidence interval for mAh

The probability mAh > 750

- Battery meets manufacturer's claims

0 50 100 150 200 250 300 350 400 450 500

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (minutes)

Volts AAA Rechargable Batteries

Student t-Test
Analysis of lab data using Matlab

Finite sample size

Data from a normal distribution

Step 1: Collect the data (done)

>> mAh = [879.531, 886.804, 880.86];

The mean and standard deviation are:
>> X = mean(mAh)

X = 882.3983

>> S = std(mAh)

S = 3.8729

This tells you the pdf

shown to the right
860 870 880 890 900

0

0.2

0.4

0.6

0.8

1

1.2

mAh

Normalized pdf

mean

standard

deviation

(spread)

90% Confidence Interval:

Two-sided test (you have two tails)

Each tail is 5%

From StatTrek (Student t-Table)

5% tails with

Two degrees of freedom

- dof = sample size minus one

t-score = 2.920.

Translation:

90% confidence interval:

- (mean 2.92 st dev)±
>> X + 2.920*S

ans = 893.7071

>> X - 2.920*S

ans = 871.0896

90% of AAA batteries should have

(871.09 to 893.71) mAh.

860 870 880 890 900

0

0.2

0.4

0.6

0.8

1

1.2

mAh

Normalized pdf

90% Confidence Interval

How many batteries meet specs?
Energy > 750mAh

This is a single-sided t-test

Find the area of the tail (< 750mAh)

Step 1: Find the t-score
>> t = (750 - X) / S

t = -34.1863

Step 2: Convert to a probability

2 degrees of freedom

- sample size minus one

t-score = -34.1863

From StatTrek

p < 0.0005%

Rounded to 0%

The manufacurer's claim is valie (!)

Rechargeable AA Battery

Repeat with a rechargable AA battery

Rating = 2400mAh

Discharge across 10 Ohms

Record votlage, Joules, mAh

Results:

Battery mAh Joules

1 (blue) 2,596.1 11,512.723

2 (red) 2,623.5 11,632.354

0 200 400 600 800 1000 1200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (minutes)

Volts

Following the same procedure as before

Sample size = 2

t-score for 5% tails = 6.314

>> mAh = [2596.1, 2623.5];

>> X = mean(mAh)

X = 2.6098e+003

>> S = std(mAh)

S = 19.3747

2500 2550 2600 2650 2700
0

0.2

0.4

0.6

0.8

1

1.2

mAh

p

mean

standard

deviation

(spread)

90% confidence interval

t-score = 6.314

Energy: (2487.5mAh - 2732.1mAh)
>> X + 6.314*S

ans = 2.7321e+003

>> X - 6.314*S

ans = 2.4875e+003

t-score for 2400 mAh

t-score = -10.8285

p(tail) = 2.9%

97.1% of batteries meet specs
>> t = (2400 - X) / S

t = -10.8285

A larger sample size would give better

results.
2400 2450 2500 2550 2600 2650 2700 2750 2800
0

0.2

0.4

0.6

0.8

1

1.2

mAh

p

90% Confidence Interval

Rechargeable 9V Battery
Raten energy = 600mAh

Discharge across 47 Ohms

Data for three batteries

Results:

Battery mAh Joules

1 402.354 10,128.095

2 388.744 9,809.798

3 393.570 9,924.400

t-Tests:

Energy = (374.74, 415.04) mAh

- 90% confidence interval

p(< 600mAh) > 99.9995%

- Manufacturer's claim is a bit generous.

0 25 50 75 100 125 150 175

0

2.5

5

7.5

10

Time (seconds)

Volts

Summary

Python is able to read from and write to text files fairly easily. With this,

you can

Plot data you recorded earlier,

Play different tunes by saving data to a given text files, and

Save data when you collect it for later analysis.

References
Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

