Text Files & Energy in a Battery

ECE 476 Advanced Embedded Systems
Jake Glower - Lecture #20

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Introduction:

The Pi1-Pico has 264k on-chip SRAM. This allows you to
« Create a text file which controls the Pi-Pico's operation
- Write to a text file, saving your data

This lecture covers
- How to open and close text files

Reading from text files

String commands and parsing strings

Reading a text file to play a tune

Writing to text files, and

Measuring the energy in a rechargeable battery

Rechargeable Batteries from Amazon: How much energy to they really have?

Opening & Closing Text Files

Opening a file: The general syntax to open a file in Python is:

file = open("File_Name", "Access_Mode")

Access Mode can take on several values:

Access Function
mode

r

Default mode
Open a text file for reading.
Pointer is placed at the start of the file.
Results in an error if the file does not exist

Open a text file for appending.
Pointer is placed at the end of the file.
Creates a new file if it does not exist

w Open a text file for write-only.
Create a new file if one does not already exist.
Clear out the contents of the existing file.

X Create a new file
Returns an error if the file already exists

The file can also be specified as a text file or a binary file (i.e. an image)

File Type Function
"t" Text file (default)
"b" Binary file (image)

Closing a file: Once finished, files should always be closed

file.close ()

Reading From a Text File

Text files are read as strings - regardless of whether the contents are actually
numbers or text. When you read a text file, you can read some or all of the
file

Command Result
Data = f.read(b) Read the next five characters into text string
Data
Data = f.readline () Read the next line into Data
Data = f.readlines|() Read the entire file into an array Data.
Each line is stored in a different entry: Data[0],
Data[1], etc
Data = f.read() Read the entire file into a text string, Data
Carriage returns and line feeds show up as /n/r

For example, assume a text file contains the following information:

readme.txt

Three rings for the Elven-kings under the sky
Seven for the Dwarf-lords in their halls of stone,
Nine for the Mortal Men doomed to die

This file can be read in its entirety

Program Window

f = open("readme.txt", "rt")
Data = f.read()

print (Data)

f.close
Shell

Three rings for the Elven-kings under the sky
Seven for the Dwarf-lords in their halls of stone,
Nine for the Mortal Men doomed to die

>>> Data

'"Three rings for the Elven-kings under the sky\r\nSeven
for the Dward-lords in their halls of stonel\r\nNone for
the Mortal Men doomed to diel\r\n'

Note that
- The file 1s stored as a text string
* \r 1s a carriage return
* \n 1s a newline command

You can also read this file line by line

Program Window

f = open("readme.txt", "rt")
Data = f.readlines ()
n = len (Data)

for 1 in range(0,n) :
print (1, Datali])
f.close

Shell
0 Three rings for the Elven-kings under the sky

1 Seven for the Dwarf-lords in their halls of stone,
2 Nine for the Mortal Men doomed to die

>>> Datal[0]
'"Three rings for the Elven-kings under the sky\r\n'

String Commands and Parsing Strings

https://www.w3schools.com/python/python_strings.asp

One way to pass data to a Python program 1s through a text file.
« list of numbers to graph
- list of music notes to play a song.

Typically, the data 1s separated by commas, spaces, or tabs
« Search for these to find the fields

Example: National Sea and Ice Data Center (NSIDC):

Arctic Sea Ice Extent

https://nsdic.org/arcticseaicenews/sea-ice-tools/
1979 7.051 16.342

1980 7.667 16.041

1981 7.138 15.632

Parsing Text Files def Parse (X) :

. X = X.strip()
« pull out fields X = X.replace(',"'," ")
. X = X.replace('\t',' ")
readlines() for i in range (0, 10) :
.) . i X = X.replace(' ',' ")
reads in an entire line hcol = X.count (' ') + 1
strip() Y = [0]*ncol
« removes spaces at the start and end for i in range(0,ncol) :
m = X.find(' ')
replace() if (m>0) :
- replaces tabs and commas with spaces elseﬁf (1] = tloat (X[0:m])
- replaces double spaces with single Y[i] = float (X)
. X = X[(m+l) :]
flnd() return (Y)
- locate Where the.spaces are Serim = 01996 9 OBl 16 QHa.
« determines the fields Y = Parse (Data)
print (Y)
X[0:m]
- field (type-string)
float()

« Convert to a floating point number 11979.0, 7.051, 16.342]

Plotting a Text File
« Sealce.txt has three columns
- Year, min(Ice), max(Ice)

« Read 1n the file
- Plot ice level vs. year

Y 1s read as a Nx3 matrix
 Transpose to pull out columns

Plot displays the data

« scaled to max & min

import LCD
import matrix

def Parse (X) :

f = open("Sealce.txt", "rt")
Data = f.readlines ()
f.close ()

n = len(Data)
Y = []
for i in range(0,n) :
Y .append (Parse (Data[i]))

Y = matrix.transpose (Y)

Navy = LCD.RGB(0,0,5)

White = LCD.RGB(100,100,100)
LCD.Init ()

LCD.Clear (Navy)
LCD.Plot (Y[O], [Y[1],Y[2]])

LCD.Title ('"Arctic Ice', White,

Navy)

Resulting Plot
« Arctic sea ice
- Plotting data from a text file

Ay E]_l ! rt-‘t Controﬂe\r
L— —- aa@aaaaug

Button EhEmmn
EESI!E]HB RIAGP7IRST |

R0 R2 R R& R

SHING

GP15

SEAL
AFTER

WA

y
REMOVE

Playing a Tune from a Text File
- Example: Mario Brothers Tune

file Mario_Bros.txt

Text files can also contain a tune to play 472

E4, 2
Each line contains 54 : g
- The note, ca, 2

« The octave, and 23, 3

- The duration of the note g 5214

- 1in 16th's of a beat: 0,4

Parse Routine
Pull out the note
« First field

Pull out the duration
« Second field

Write a test program
« Check each element of Y
« Contains note and duration

Parse subroutine

def Parse (X) :
.strip ()
.replace(','," ")
.replace('\t',"' ")
in range (0, 10) :

X = X.replace(' ',' ")
m = X.find ("' ")
Note = X[0:m]
Dur = int (X[(m+1) :])
return ([Note, Dur])

Hh XX X

[T | I | |
H- <X X X

(@)

f = open("Mario_Bros.txt", "rt")

Data = f.readlines ()
f.close ()

n = len(Data)
Y = []
for i in range(0,n) :
Y .append (Parse (Data[i]))
print (Y)

Shell
[[E4' 2], ['E4',2], ['E4',4],
['] ['C4', 2] ['E4",],
[G4' ['G3',4]7,
[

41, ['0",4],
4]]

Convert notes to frequency

Note | CO | C#0 | DO EO FO | F#0 | GO | G#0 | A0 | A#0 | BO
Hz | 16.35 | 17.32 | 18.35 | 20.6 | 21.83 | 23.12 | 245 | 25.96 | 27.5 | 29.14 | 30.87
Freq subroutine
Start with the frequency det Freq(a):
n = len(a)
« Assume zeroth octave Note = al[0:n-1]
Octave = a[n-—-1]
Scale by 2**n Hz = 0
. _ if (Note == 'C'"):
n = octave Hy — 16.35
elif (Note == 'C#') :
Hz = 17.32
Write a test routine slofillote == "Dy«
. . Hz = 18.35
« Verify frequencies are correct :
if(Hz > 0):
Hz = Hz * (2 ** 1int (Octave))

return (Hz)

print ('A3 = ', Freqg('A3'), Hz")
print ('D4 = ', Freqg('D4'), ' Hz'")
print ('G#5 = ', Freq('G#5'), ' Hz'")
shell

A3 = 220.0 Hz

D4 = 293.6 Hz

G#5 = 830.72 Hz

Playing a Tune

Finally, reuse the Play(Hz, Dur)
- Hz = frequency
« Dur = duration in 1/16 beat

Spin through a text file to play a
tune

« More impressive in the video

def

Play (Hz, Eighths):
if (Hz > 0):

Spkr.freg(round (Hz))

Spkr.duty_ul6 (32768)
else:

Spkr.duty_ulé6 (0)
sleep_ms (75 * Eighths - 50)
Spkr.duty_ul6 (0)
sleep_ms (50)

f = open("Mario_Bros.txt", "rt")
Data = f.readlines /()
f.close ()
n = len(Data)
Y = []
for i in range(0,n) :
Y .append (Parse (Data[i]))
for i in range(0,n) :

Hz = Freg(Y[i])
Dur = Y[1][1]
print (i, Hz, Dur)
Play (Hz, Dur)

Writing to a Text File

You can also write to a text file
 Save data for later analysis
« Voltage of a discharging battery
Open Options

" H
[]

append to file.

- Create new file if needed
« "w" clear current file

- Create new file if needed

File Write
« Writes a text string to a file
 \n = carriage return
- \t=tab

filel = open("readme.txt",

print ('File Opened')

for i in range(0,6) :
filel.write(str(i))
filel.write ("x")
filel.write(str (1))
filel.write ("\n")

filel.close ()
print ('File Closed')

readme.txt

0x0
1x1
2X2
3x3
x4
5x5

"W")

Note: To open readme.txt, from Thonny,
« Click on File Open

« Select Raspberry Pi Pico
 Select readme.txt

Writing_to_File.py A2D_Write_to_File.py

filel = open("readme.txt", "w")

3 for i in range(0,6):
filel.write(str(i))
filel.write{"x")
filel.write{str(id)

filel.wW T& Open from Raspberry PiPico X
4 Fl:!'E1'C1?SE Raspberry Pi Pico
18 print('File)
: Mame Size (bytes)
L lib
& LCD.py 31394
& main.py 2195
@ matrix. gy 6211
i% readme. bt 24
Shell File name: OK Cancel
>33 I

After writing to a file, the file on the Pi-Piico board can be opened using Thonny

Example: Reading A/D channels
- Read three A/D inputs

« Sample every 100ms
- A/D read takes 100us
- Write to file takes 1770us
- Write these to a file
- Separate data with spaces
- Terminate with a carriage return

_ H\nH

import machine, time

a2d0 = machine.ADC (0)

a2dl = machine.ADC (1)

a2d?2 = machine.ADC (2)

kv = 3.3 / 65535

filel = open("readme.txt",

for i in range(0,10) :

VO = a2d0.read_ulb6 ()
V1l = a2dl.read _ulo ()
V2 = azd2.read_ul6 ()
filel.write(str (i) +

filel.write(str

(V
filel.write(str (V
(V

filel.write(str
time.sleep(0.1)

filel.close ()
file readme.txt

0

1
2
3

1.

1
1
1

3925 1.4231 O
.3893 1.4215 O
.3869 1.4231 O
.3901 1.4231 O

*
*
*

"

)
O) + nw
1) + "
2) + "

.0556
.0548
.0556
.0548

"W")

kV
kV
kV
")
")
")
\n")

Energy in a Battery: Hardware
Next, to measure the energy in a rechargeable battery,
« Connect the battery to a 10 Ohm resistor, and

- Measure the voltage with a Pi-Pico

« For 9V batteries

- Add a divide by 3 circuit
- increase R to 47 Ohms

_Vy _
I_R P_R

200k

: AAA

10 100k . i

GND

— only included for 9V battery

Expected Battery Life:

Based upon battery rating, the time of the experiment should be:

Battery Voltage mAh R mA @ R Hours
Type (rated) (Ohms)
AAA 1.5V 750 10 150 5.00h
AA 1.5V 2,400 10 150 16.0h
9V 9.0V 600 47 191.48 3.13 h

One reason to save the data to a text file
« I don't want to wait around for 16 hours
- If you save data every second, 16 hours 1s 57,600 data points
« Pi-Pico doesn't have that much memory

Energy in a Battery: Software

Measure the voltage every second
« Display on the Pico board
« Save to a file every 60 seconds

Stop when < 0.5V
- Battery 1s discharged

Battery

146.6
1.335
¢.178
25.228
5.671

Code Listing
- abbreviated
« full code on Bison Academy

Interupts set the sampling rate
- one second

Every second
« Measure the voltage
« Compute Watts, Joules, mAh

- Display every second
- Write to file every 60 seconds

When done
« Close the file

def tick(timer) :
global flag
flag = 1

T =1

Time = Timer ()

Time.init (freq = 1/T,

mode=Timer .PERIODIC, callback = tick)

filel = open("Battery_Test.txt", "w")

while (Volts > 0.5):

while (flag == 0):
pass

flag = 0
Volts = (a2d2.read_uloe () * kV)
mA = Volts / 10 * 1000
mAh += mA * T / 3600
Watts = (Volts ** 2) / 10
Joules += Watts * T
filel.write(str(time))
filel.write(str (Volts))
filel.write (str (mAh))
filel.write (str (Joules))
filel.write ("\n")
time += 1

filel.close ()

~ o~ o~ —~

(
(
(
(

Rechargeable AAA Battery
- Rated Energy: 750mAh

. Volts AAA Rechargable Batteries
Experiment:

1.6

 Fully chargethree AAA batteries

+ One by one, place in a battery holder 14

- Discharge across a 10 Ohm resistor
« Record the voltage until it drops below
0.5V

1.2

Results:

0.8

Battery mAh Joules
1 879.53 3486.54 0.6
2 886.80 3444.23
3 880.86 3547.31 0.4

Analysis: Find 02

« The 90% confidence interval for mAh

o

* The probability mAh > 750 0 50 100 150 200 250 300 350 400 450 500

- Battery meets manufacturer's claims Time (minutes)

Student t-Test
« Analysis of lab data using Matlab

- Finite sample size
« Data from a normal distribution

Step 1: Collect the data (done)

>> mAh = [879.531, 886.804, 880.86];

The mean and standard deviation are:

>> X = mean (mAh)
X = 882.3983

>> S = std(mAh)
S = 3.8729

This tells you the pdf
« shown to the right

Normalized pdf

1.2

0.8

0.6

0.4

0.2

standard
deviation
(spread)

860

870 880 890
mAh

900

90% Confidence Interval:
« Two-sided test (you have two tails)
- Each tail 1s 5%

From StatTrek (Student t-Table)
« 5% tails with

« Two degrees of freedom
- dof = sample size minus one

« t-score = 2.920.
Translation:
* 90% confidence interval:

- (mean X 2.92 st dev)
>> X + 2.920*S
ans = 893.7071

>> X — 2.920*S
ans = 871.0896

90% of AAA batteries should have
(871.09 to 893.71) mAh.

Normalized pdf

1.2

0.8

0.6

0.4

0.2

90% Confidence Intervg

i|

880
mAh

890

900

How many batteries meet specs?

« Energy > 750mAh
This 1s a single-sided t-test
- Find the area of the tail (< 750mAh)

Step 1: Find the t-score

>> t = (750 - X) / S
t = -34.1863

Step 2: Convert to a probability

« 2 degrees of freedom
- sample size minus one

* t-score = -34.1863
From StatTrek
* p <0.0005%
- Rounded to 0%
« The manufacurer's claim is valie (!)

In the dropdown bozx, select the statistic of interest.
Enter a value for degrees of freedom.
Enter a value for all but one of the remaining textboxes.

Click the Calculate button to compute a value for the blank textbox.

Statistic t score v
Degrees of freedom 2
t score -34.18
Probability: P(T<-34.18) 0

Calculate

Rechargeable AA Battery Volte
Repeat with a rechargable AA battery 16
« Rating = 2400mAh
« Discharge across 10 Ohms
- Record votlage, Joules, mAh

Results:
Battery mAh Joules
1 (blue) 2,596.1 11,512.723
2 (red) 2,623.5 11,632.354

0.6

0.4

0.2

Time (minutes)

Following the same procedure as before
« Sample size =2
* t-score for 5% tails = 6.314

>> mAh

>> X

2

= [2596.1,
mean (mAh)
.6098e+003

std (mAh)
19.3747

2623.5];

1.2

0.8

0.6

0.4

0.2

! R

mean

|
|
|
|
(\‘
|
|
|
|
|
|
|

standard
deviation
(spread)

O L L
2500

mAh

2550 2600

2650

2700

90% confidence interval
« t-score = 6.314

« Energy: (2487.5mAh - 2732.1mAh) P

>> X + 6.314*S
ans = 2.7321e+003 - 90% Confidence Interval

T

1.2

>> X — 6.314*S
ans = 2.4875e+003

t-score for 2400 mAh
« t-score =-10.8285
 p(tail) =2.9%

« 97.1% of batteries meet specs

>> t = (2400 - X) / S
t = -10.8285

A larger sample size would give better
results. mAh

Rechargeable 9V Battery

- Raten energy = 600mAh

« Discharge across 47 Ohms

« Data for three batteries

Results:
Battery mAnh Joules
1 402.354 10,128.095
2 388.744 9,809.798
3 393.570 9,924.400
t-Tests:

« Energy = (374.74, 415.04) mAh

- 90% confidence interval

« p(< 600mAh) > 99.9995%

- Manufacturer's claim is a bit generous.

Volts

10

7.5

2.5

Time (seconds)

Summary
Python 1s able to read from and write to text files fairly easily. With this,
you can

- Plot data you recorded earlier,

« Play different tunes by saving data to a given text files, and

- Save data when you collect it for later analysis.

References
Pi-Pico and MicroPython

* https://github.com/geeekpi/pico_breakboard_kit

* https://micropython.org/download/RPI_PICO/
https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html
Pi-Pico Breadboard Kit
* https://wiki.52pi.com/index.php?title=EP-0172

Other
* https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

