
Timer Interrupts

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #17

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

The previous lecture covered edge interrupts

Subroutine called by hardware

Triggered by a rising or falling edge

This lecture looks at timer interrupts

Interrupts triggered every N seconds

Interrupts triggeded N seconds from now

Timer interrupts are useful:

More efficient & accurate version of sleep()

More precise timing of the main loop

Processor isn't shut down like sleep()

With timer interrupts, you can

Build an automated stoplight

Sample a voltage every N ms

Implement a digital filter

Periodic Interrupt

Called every N seconds

time

time

One-Shot Interrupt

Called N seconds in the future

In this lecture, we'll go over

What Timer interrupts are,

How they're set up,

and some things you can do with them

Implement a Ton() function:

- A button has to be held down for T seconds

Implement a Toff() function:

- An output remains on for T seconds

Set the timing for a stoplight

Set the timing of a game

- play hungry hungry hippo for 10.00 seconds

Note: Interrupts don't interfere with each other

You can turn on multiple timer interrupts

You can turn on multiple edge interrupts

All at the same time

Periodic Interrupt #1

Called every N1 seconds

time

Periodic Interrupt #2

Called every N2 seconds

Edge Interrupt #3

Called every rising edge of GPa

Edge Interrupt #4

Called every falling edge of GPb

Turning On Periodic Timer Interrupts

Starting out, let's just turn on a timer interrupt

 Count once per second

Timer interrupts are similar to edge

interrupts:

Called by hardware

- one second elapses

Global variables are needed

- pass data to the main routine

Only called when needed

- The main loop is free to do whatever

between interrupts

- Different from sleep(1)

from machine import Pin, Timer

from time import sleep_ms

led = Pin(17, Pin.OUT)

tim = Timer()

N = 0

def tic(timer):

 global N

 N += 1

tim.init(freq=1, mode=Timer.PERIODIC,

callback=tic)

while(1):

 print(N)

 sleep_ms(100)

Timer Interrupts

Program Desciption:

Timer

- timer interrupt function

- low-level routine from machine

N

- Global variable

- Passes the count to the main routine

tick(time):

- Interrupt service routine

freq=1

- interrupt is called every 1Hz

mode=Timer.PERIODIC

- called over an over again

mode=Timer.ONE_SHOT

- called just once

from machine import Pin, Timer

led = Pin(17, Pin.OUT)

tim = Timer()

N = flag = 0

def tick(timer):

 global N

 global flag

 N += 1

 flag = 1

tim.init(freq=1, mode=Timer.PERIODIC,

callback=tick)

while(1):

 if(flag):

 flag = 0

 print(N)

Program 2: Fire Cheat:

Both edge and timer interrupts can be used

Interrupts do not conflict

Example: Fire-Button Cheat

When GP15 is pressed, (falling edge interrupt)

Three pulses are output of GP16 (three shots using a timer interrupt)

Each shot should be on for 200ms and off for 200ms

GP15

GP16

200ms 200ms 200ms

timer interruptsedge interrupt

Fire Cheat

Fire

Falling Edge interrupt

Initializes N = 5

- five toggles coming up

Initializes timer interrupts

- 5Hz (200ms)

- periodic

Tic

Timer interrupt

Decrements N down to zero

If on last toggle (N==1)

- Makes next interrupt a one-shot

Main Loop

Doesn't do anything

Interrupts do all the work

The flag isn't needed

- just prints on toggles

from machine import Pin, Timer

from time import sleep_ms

tim = Timer()

flag = N = 0

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)

LED = Pin(16,Pin.OUT)

def Fire(pin1):

 global N, flag

 LED.value(1)

 if(N == 0):

 N = 5

 flag = 1

 tim.init(freq=5, mode=Timer.PERIODIC,

callback=Tic)

def Tic(timer):

 global N, flag

 if(N):

 flag = 1

 N -= 1

 LED.toggle()

 if(N == 1):

 tim.init(freq=5,

mode=Timer.ONE_SHOT, callback=Tic)

 else:

 LED.value(0)

pin1.irq(trigger=Pin.IRQ_FALLING, handler=Fire)

while(1):

 if(flag):

 flag = 0

 print(LED.value(), N)

Toff: Bathroom Light & Fan:

The ONE_SHOT feature allows you to set up events N seconds ahead

Example: Bathroom light and fan

When GP15 is pressed (on)

- The bathroom light turns on, and

- The bathroom fan turns on

When GP14 is pressed (off)

- The light turns off immediately

- The fan turns off five seconds later

With ladder logic, this is called a Toff

function

ON (GP15)

OFF (GP14)

Light

5 seconds

Fan

on pff

on off

Edge Interrupt Timer Interrupt

button pressed

button pressed

Python Code

Three interrupts are used

On

- Falling edge interrupt

- Turn on the light and fan

Off

- Falling edge interrupt

- Turn off the light

- Set up a timer interrupt in 5

seconds

Tick

- Timer interrupt

- Turn off the fan

Note

This is a fairly simple

program using interrupts

from machine import Pin, Timer

from time import sleep

Time = Timer()

N = 0

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)

pin2 = Pin(14,Pin.IN,Pin.PULL_UP)

LED = Pin(16,Pin.OUT)

Fan = Pin(17,Pin.OUT)

def On(pin1):

 LED.value(1)

 Fan.value(1)

def Off(pin2):

 LED.value(0)

 Time.init(freq=1/5, mode=Time.ONE_SHOT,

callback=Tick)

def Tick(timer):

 Fan.value(0)

pin1.irq(trigger=Pin.IRQ_FALLING, handler=On)

pin2.irq(trigger=Pin.IRQ_FALLING, handler=Off)

while(1):

 print(LED.value(), Fan.value())

 sleep(1)

Ton Function
Turn on a light if a button is held down for X seconds

Sometimes you want to require a button is held down for X seconds

Inadvertent button presses are ignored

In ladder logic, this is called a Ton function

For example

Turn on a light (GP16) if a button is held down for 5.00 seconds

- Ignore button presses shorter than 5.00 seconds

Turn off a light as soon as the button is released

5.0 seconds

< 5 seconds ignored

pressedGP15

GP16

Ton Code (take 1)

There are several ways to do this.

Option #1:

Set a timer for 10ms

Set up a counter (TimeOn)

- Clear the counter when button is

released

- Increment the counter when buttton is

pressed

If the counter exceeds 500 (5sec)

- Turn on the light

Note:

- This code works, but it is inefficient

(interupts are called every 10ms)

- Timing is a little off (changes every

10ms)

from machine import Pin, Timer

import time

light = Pin(16, Pin.OUT)

tim = Timer()

TimeOn = 0

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)

def Tick(timer):

 global TimeOn

 if(pin1.value() == 0):

 TimeOn += 1

 else:

 TimeOn = 0

 light.value(0)

 if(TimeOn >= 500):

 TimeOn = 500

 light.value(1)

tim.init(freq=100,

mode=Timer.PERIODIC, callback=Tick)

while (1):

 print(light.value(), TimeOn)

 time.sleep(0.1)

Ton Code (take 2)
A better solution:

- A little trickier

- More precise

Use an edge interrupt (Light):

If a rising edge (off)

- turn off the light

- Change the timer interrupt to call

Light Off (light stays off)

If a falling edge (on)

- Turn on a timer interrupt in 5

seconds

- Change the timer interupt to call

LightOn

Timer Interrupt

- When timer interrupt kicks in, turn

on or off the light

- Only turns on if falling edge was

detected 5.00 seconds ago

Ton Function (ver 2)

from machine import Pin, Timer

import time

tim = Timer()

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)

LED = Pin(16, Pin.OUT)

def Light(pin1):

 if(pin1.value() == 1):

 LED.value(0)

 tim.init(freq=5,

mode=Timer.ONE_SHOT, callback=LightOff)

 else:

 tim.init(freq=1/5,

mode=Timer.ONE_SHOT, callback=LightOn)

def LightOn(timer):

 LED.value(1)

def LightOff(timer):

 LED.value(0)

pin1.irq(trigger=Pin.IRQ_FALLING | Pin.IRQ_RISING,
handler=Light)

while (1):

 print(light.value(), TimeOn)

 time.sleep(0.1)

Hungry-Hungry Hippo (ver 3)

Use edge interrupts

Start the game on GP18

- Set the time to 10.00 seconds

Count button presses for each player

- Falling edges on GP15 and GP14

Use timer interrupts for game duration

Timer interrupts every 10ms

- Allows you to display the time remaining

- Decrement time to 0.00, stopping at zero

Score points while the game is ongoing

- Stop counting edges once the game ends

GP18 (game start)

Edge Interrupts

GP15 (Player A)

Edge Interrupts

GP14 (Player B)

Timer Interrupts (100Hz)

10.00 seconds

(only count edges while game is on)

Hungry-Hungry-Hippo v3
Edge Interrupts

Start the game on reset

Reset counters to zero

Reset game time to 10.00 seconds

Player1

Falling edge interrupt

- GP15 is pressed

If the game is ongoing

- Count button presses for player 1

Player2

Falling edge interrupt

- GP14 is pressed

If the game is ongoing

- Count button presses for player 2

from machine import Pin, Timer

import time

pin0 = Pin(18,Pin.IN,Pin.PULL_UP)

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)

pin2 = Pin(14,Pin.IN,Pin.PULL_UP)

N1 = N2 = 0

Game Time = 1000

def player1(pin1):

 global N1

 global GameTime

 if(GameTime > 0):

 N1 = N1 + 1

def player2(pin2):

 global N2

 global GameTime

 if(GameTime > 0):

 N2 = N2 + 1

pin0.irq(trigger=Pin.IRQ_FALLING, handler=GameStart)
pin1.irq(trigger=Pin.IRQ_FALLING, handler=player1)
pin2.irq(trigger=Pin.IRQ_FALLING, handler=player2)

Hungry-Hungry-Hippo v3
Timer Interrupts

Tic

If the game is ongoing

- Decrement time to zero

- Toggle the LED

Once the game is over

Turn off the LED

The main routine

Displays the score every 100ms

:

LED = Pin(18,Pin.OUT)

def tic(timer):

 global led

 global GameTime

 if(GameTime > 0):

 GameTime -= 1

 led.toggle()

 else:

 led.off()

tim.init(freq=100, mode=Timer.PERIODIC, callback=tic)

while(1):

 while (GameTime > 0):

 print(GameTime*0.01, N1, N2)

 time.sleep(0.1)

 time.sleep(0.1)

StopLight (ver 3)

With timer interrupts, you can set up the time for each color. Building upon

the previous stoplight program, write a program that counts from N=0 to 6

with timing being:

N=0 N=1 N=2 N=3 N=4 N=5 N=0

5s 5s 5s2s 2s 2s 2s

N/S

E/W

Interrupts can be used to set these times several ways:

A timer interrupt can be called every 100ms and keep track of time.

- At certain times, the lights change (N increases), or

Each time the light changes,

- Set up the next interrupt X seconds in the future

Using the latter method:

Stoplight (ver 3)

from machine import Pin, Timer

from time import sleep_ms

tim = Timer()

N = 0

def StopLight(pin1):

 global N

 N = (N + 1) % 6

 if(N == 0):

 tim.init(freq=1/5,mode=Timer.ONE_SHOT,callback=StopLight)

 if(N == 1):

 tim.init(freq=1/2,mode=Timer.ONE_SHOT,callback=StopLight)

 if(N == 2):

 tim.init(freq=1/2,mode=Timer.ONE_SHOT,callback=StopLight)

 if(N == 3):

 tim.init(freq=1/5,mode=Timer.ONE_SHOT,callback=StopLight)

 if(N == 4):

 tim.init(freq=1/2,mode=Timer.ONE_SHOT,callback=StopLight)

 if(N == 5):

 tim.init(freq=1/2,mode=Timer.ONE_SHOT,callback=StopLight)

time.init(freq=1/5,mode=Timer.ONE_SHOT,callback=StopLight)

Time = 0

while(1):

 print(Time, N)

 Time += 1

 speep_ms(1000)

StopLight (ver 4): Adding a Walk button

A simple variation is to have the light always green E/W unless the walk

button is pressed. Once that happens, go through the sequence of N=0..5

then stop again at 0 until the walk button is pressed again.

Event in 5s Event in 2s Event in 5sButton Press

Walk Button

GP15

Green Yellow Red Green

Walk Button: Trigger a light change using one-time events (one-shot interrupts)

from machine import Pin, Timer

from time import sleep_ms

tim = Timer()

N = 0

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)

def Walk(pin1):

 tim.init(freq=1/5,mode=Timer.ONE_SHOT,callback=StopLight)

def StopLight(pin1):

 global N

 N = (N + 1) % 6

 if(N == 1):

 tim.init(freq=1/2,mode=Timer.ONE_SHOT,callback=StopLight)

 if(N == 2):

 tim.init(freq=1/2,mode=Timer.ONE_SHOT,callback=StopLight)

 if(N == 3):

 tim.init(freq=1/5,mode=Timer.ONE_SHOT,callback=StopLight)

 if(N == 4):

 tim.init(freq=1/2,mode=Timer.ONE_SHOT,callback=StopLight)

 if(N == 5):

 tim.init(freq=1/2,mode=Timer.ONE_SHOT,callback=StopLight)

pin.irq(trigger=Pin.IRQ_FALLING,handler=Walk)

Time = 0

while(1):

 print(Time, N)

 Time += 1

 sleep_ms(1000)

Setting a Fixed Sampling Rate with Timer Interrupts

Timer interrupts are a more precise way

of setting the sampling rate.

Example: measure the discharge of a

capacitor

Sample the voltage every 1.00ms

time.sleep() works, but

The time isn't exact

- the total loop includes additional code

sleep() wasts a lot of processor time

Example (following page)

The sampling rate is 586.928Hz

The sampling time is 1.703ms

- should be 1.000ms

AN2

Pi-Pico

R

C

3.3V

t=0

Better Solution:

Set up a timer interrupt for 1.00ms

Set a flag every time you interrupt

The main routine waits for the flat to be set

When detected, run through the main loop

Clear the flag, then

Wait for it to be set again

- every 1.000 ms

Note: The output square wave is 1.00018kHz

The sampling rate is 1.00ms

Code:

A flag is used

Indicates 1ms has

elapsed

from machine import ADC, Pin, Timer

from time import sleep

a2d2 = machine.ADC(2)

tim = Timer()

flag = 0
k = 3.3 / 65520

dT = 0.001

def tick(timer):

 global flag

 flag = 1

tim.init(freq=1000, mode=Timer.PERIODIC, callback=tick)

LED = Pin(16,Pin.OUT)

while(1):

 LED.value(0)

 while(flag == 0):

 pass
 LED.value(1)

 flag = 0

 a2 = a2d2.read_u16()

 V2 = k*a2

 print('{: 7.4f}'.format(V2))

Fixed Sampling Rate: Example

Measure the voltage across a capacitor as it discharges

Sample the voltage every 1.00ms

Result is a clean exponential decay

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Time (ms)

Volts

Digital Filters

Yet another application of timer interrupts is implementing digital filters.

With a digital filter, you have to know the sampling rate, T: the conversion

from the s-plane to the z-plane depends upon knowing T. If T changes, the

filter is wrong.

For example, design a digital filter to implement

Y = 


50

(s+5+j5)(s+5−j5)


X = 


50

s2+10s+50


X

One way to do this is to convert to the z-plane

z = esT

Assuming a sampling rate of 10ms (T = 0.01), the poles in the s-plane

convert to the z-plane as

 s = −5 + j5 z = esT = 0.9500 + j0.0475

 s = −5 − j5 z = esT = 0.9500 − j0.0475

so a discrete-version of G(s) would be

Y = 


k(z+1)2

(z−0.9500−j0.0475)(z−0.9500+j0.0475)


X

where k is chosen to set the DC gain to 1.00 (same as G(s)). Multiplying

out

Y =





0.001209z
2+2z+1

z2−1.900z+0.904837




X

In Code...
from machine import ADC, Pin, Timer

a2d2 = machine.ADC(2)

tim = Timer()

flag = 0
k = 3.3 / 65520

x0 = x1 = x2 = y0 = y1 = y2 = 0

def tick(timer):

 global flag

 flag = 1

tim.init(freq=100, mode=Timer.PERIODIC, callback=tick)

LED = Pin(16,Pin.OUT)

while(1):

 LCD.value(0)

 while(flag == 0):

 pass

 LED1.value(1)

 flag = 0

 a2 = a2d2.read_u16()

 V2 = k*a2

 x2 = x1

 x1 = x0

 x0 = k*a2

 y2 = y1

 y1 = y0

 y0 = 1.9008*y1 - 0.90483*y0 + 0.001209*(x0 + 2*x1 + x2);

 print('{: 7.4f}'.format(x0), '{: 7.4f}'.format(y0))

Result when filtering a square wave:

Filter has poles at s = -5 + /- j5

Shows up as exponential rise and fall

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

Time (seconds)

Volts

Raw A/D Signal

Filtered A/D Signal

Result of filtering the A/D signal

Stepper Motor Controls

Finally, timer interrupts are also useful for stepper motors

Every 10ms (Timer interrupt):

Step forward one step if Step < Ref

Step back one step if Step > Ref

No nothing if Step == Ref

By placing this inside the interrupt

The main routine is free to do anything

The timing for the stepper motor won't be affected

Ref Steps

Slew-Rate Limit
1 step every 10ms

0

100

0

from machine import Pin, Timer

import time

tim = Timer()

Step = 0

Ref = 0

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)

pin2 = Pin(14,Pin.IN,Pin.PULL_UP)

Sa = Pin(6,Pin.OUT)

Sb = Pin(7,Pin.OUT)

Sc = Pin(8,Pin.OUT)

Sd = Pin(9,Pin.OUT)

def Stepper(Step):

 X = Step % 4;

 if(X == 0):

 Sa.value(1)

 Sb.value(0)

 Sc.value(0)

 Sd.value(0)

 if(X == 1):

 Sa.value(0)

 Sb.value(1)

 Sc.value(0)

 Sd.value(0)

 if(X == 2):

 Sa.value(0)

 Sb.value(0)

 if(X == 2):

 Sa.value(0)

 Sb.value(0)

 Sc.value(1)

 Sd.value(0)

 if(X == 3):

 Sa.value(0)

 Sb.value(0)

 Sc.value(0)

 Sd.value(1)

def tick(timer):

 global Step, Ref

 if(Step < Ref):

 Step += 1

 if(Step > Ref):

 Step -= 1

 Stepper(Step)

tim.init(freq=100,

mode=Timer.PERIODIC, callback=tick)

while (1):

 if(pin1.value() == 0):

 Ref = 0

 if(pin2.value() == 0):

 Ref = 100

 print(Ref, Step,)

 time.sleep(0.1)

Summary

The Pi-Pico is capable of timer interrupts as well

Timer interrupts

Allow you to measue time

Allow you to set a fixed sampling rate

Allow you to trigger routines N seconds in the future

Again, interrupts are confusing

If you can figure them out, some programs become much simpler to write

References
Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

