
Math & Random Libraries

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #14

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions



Introduction:

The math and random libraries include a bunch of useful routines.  In this

lecture, we'll go over some of these functions as well as writing our own

routines to expand these libraries.

Good descriptions of these two libraries are available here:

https://docs.python.org/3/library/math.html

https://docs.python.org/3/library/random.html

Note:

MicroPython uses a subset of the libraries used in Python

The Raspberry Pi Pico doesn't have as much memory as a Raspberry Pi



Math Library

The content of the math library can be found using the script shell.  This is a

subset of what's available in Python 3.

>>> import math

>>> dir(math)

['__class__', '__name__', 'pow', '__dict__', 'acos', 'acosh',

'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign',
'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1',

'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'gamma', 'inf',

'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma',

'log', 'log10', 'log2', 'modf', 'nan', 'pi', 'radians', 'sin',

'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc']

A brief description of these functions is as follows...



Constants:

Several constants are defined in the math library:
pi 3.14159...

the ratio of a circle's circumference to its radius

tau 6.283185...
the ratio of a circle's circumference to its diameter

e 2.718281...

Natural constant

exp(x) is the only function equal to its derivative

Also shows up in interest calculations, calculus, etc. 

nan not-a-number.  

nan is not equal to anything other than non

inf infinity



Note on NaN

nan can be used as a place holder.  For example, in controls systems, the

dynamics of a system can be written in state-space form as

sX = AX + BU

Y = CX + DU

This is a little cumbersome since you need to keep track of four matrices for

any given system: {A, B, C, D}.  You can store these as a single matrix

using nan as space holders:

G =










A nan B

nan nan nan

C nan D










From this point onwards, you can just work with a single matrix, G, to

describe a dynamic system.



Trig Functions:
sin, cos, tan, 

asin, acos, atan, atan2(x,y)

y = degrees(x)    y = x*180/pi 
y = radians(x)    y = x*pi/180

Trig functions are all about the unit circle

cos(q) the x-coordinate of the vector 1∠q

sin(q) the y-coordinate of the vector 1∠q

tan(q) the y-coordinate of the tangent line

with an angle of q to the origin

They can also be defined using the

complex exponential:

cos(x) = 


ejx+e−jx

2



sin(x) = 


ejx−e−jx

2j



cos(q)

sin(q)

tan(q)

q
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y
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Trig Functions Execution Time
Can be found using ticks_us()

Write a test program

14,339us to loop 1000 times

59,410us adding a cos() funciton

Take the difference

45,071us for 1000 cos() functions

45.071us per cos() function

execution time = 45.072us

cos()

import math

import time

x0 = time.ticks_us()

for i in range(0,1000):

    x = i*0.01

    y = math.cos(x)

x1 = time.ticks_us()

print(x1-x0, 'us')

Shell

# removing the cos() function

14399 us

#including the cos() function

59410 us



Hyperbolic Functions:
sinh, cosh, tanh, asinh, acosh, atanh

Hyperbolic functions result from the sine or cosine of a complex number.

cos(jx) = cosh(x)

They also result in nature quite often.  For example,

The shape of a soap film is a cosh() function

The shape of a hanging chain is a cosh() function

This can be derived when you take a course on calculus of variations.



Statistics Functions
factorial(x) factorial(x) = 1 * 2 * 3 * ... * x

gamma(x) factorial for non-integers

erf(x) Error function for x

= 2

π ∫0
x

e−x2

dx

Note: The error function is used to compute the probability associated with a

z-score in normal distributions (more on this later)

Area = ( erf(z/sqrt(2) + 1) / 2
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Exponential

exp(x)   ex

expm1(x)    ex − 1

2 ** x     (standard python syntax for raising to a power)2x

log(x)   log base e (natural log)

log2     log base 2

log10   log base 10

Rounding
ceil(2.3)    round up

    3

floor(2.3)    round down

    2

 

Other
sqrt(x)    square root

x ** 0.7    standard python syntax for raising to a power



Random Library

Functions in the random library can be found using the dir command.

This is a subset of what's available on Python 3

>>> import random

>>> dir(random)

['__class__', '__init__', '__name__', '__dict__', 'choice',
'getrandbits', 'randint', 'random', 'randrange', 'seed',

'uniform']

These functions are:
randint(a,b) returns in integer in the range of [a,b]

random() returns a float in range of (0,1)

randrange(start, stop, step)  returns a random number with step size

randrange(stop) returns a number from 0..stop

seed(a) specify the starting seed for random numbers

if a is not passed, uses system time

uniform(a,b)  returns a float in the range of (a,b)



General Stuff

Additional functions can be added by writing your own subroutines.

Convolution:

Convolution appears several places:

The output of a signal going through a filter is the convolution of the input and

the filter's impulse response

Multiplication of polynomials is convolution

Combining probability-density functions (pdf's) is convolution

Example:  Multiply out the following polynomials

A = 3 + 2x + x2

B = 5 + 2x2

C = 6 − 3x + 4x2 + 7x3

Y = ABC



Convolution Example:

def conv(A, B):

    nA = len(A)

    nB = len(B)

    nC = nA + nB - 1

    C = []

    for n in range(0,nC):

        C.append(0)

        for k in range(0,nA):
            if( ( (n-k) >= 0) & ( (n-k) < nB ) & (k < nA) ):

                C[n] += A[k]*B[n-k]

    return(C)

A = [3,2,1]

B = [5,0,2]

C = [6,-3,4,7]

AB = conv(A,B)

Y = conv(AB,C)

print(Y)

Shell

[90 15 96 136 114 87 36 14]

The result is

Y = 90 + 15x + 96x2 + 136x3 + 114x4 + 87x5 + 36x6 + 14x7



Combinations & Permutations:

The number ways you can arrange m items selected from a population of n

Where order does not matter (n choose m) and

Where order does matter (n pick m)

         n choose m.  order does not matternCm = n!

m!⋅(n−m)!

              n pick m.  order does matternPm = n!

(n−m)!

from math import factorial

# Comninatorics:  n choose m

def nCm(n,m):

    y = int( ( factorial(n) / factorial(m) ) / factorial(n-m) )

    return(y)

# permitations: N pick M

def nPm(n,m):

    y = int( factorial(n) / factorial(n-m) )

    return(y)



Example:  How many distinct volleyball teams can you make with 20

people?  

In this case, order doesn't matter.

N = 20 choose 6

N = 20!

6!⋅24!
= 38, 760

How many volleyball teams can you make where each person is assigned a

specific position?  (1st player is setter, 2nd is outside hitter, etc.) 

In this case, order does matter.

N = 20 pick 6

N = 20!

6!
= 27, 907, 200



pdf's & cdf's
Probability Density Functions (pdf)

Cumulative Distribution Functions (cdf)

The random library has several

probability functions

These are described by pdf's and cdf's

pdf:  A pdf is the probability that a

random variable is equal to x

 y(a) = p(x = a)

cdf: A cdf is the probability that a

random variable is less than x

Y(a) = p(x < a)

Both can be discrete or continuous:

discrete:  x can only take on certain

values, such as integers

continuous: x can take on any value

Discrete
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Mean, Standard Deviation, and Variance

The mean of a pdf is

The average or

The center of mass

µ = Σ pi ⋅ xi

The variance of a pdf is

A measure of the spread

The avg distance to the mean squared

            σ2 = Σ p i ⋅ (xi − µ)
2

The standard deviation is 

                              σ = σ2
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Discrete Random Distributions

Bernoulli Trial:  Toss a coin toss

The outcome is binary 1 or 0.

Examples

A coin toss:  p = 1/2

Roll 6-sided die to get a one: p = 1/6

Bet on red on Roulette: p = 15/31

Bet on 10-black in Roulette: p = 1/31

The pdf for a Bernoulli trial only has

two possible outcomes:

1:       success

0:       failure
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Bernoulli Trials in Python

Use the random function in the random

library

Example:

Flip a coin

p(success) = 0.7

from random import random

p = 0.7

for i in range(0,5):

    if (random() < p):

        Win = 1

    else

        Win = 0

    print(i,Win)

shell

1     1

2     1

3     0

4     1

5     0



Binomial Distribution:  

Conduct n Bernoulli trials and count the number of successes.

Flip a coin 10 times and count the number of heads

Roll a six-sided die 10 times and count the number of ones

The pdf for a binomial distribution is

p(x = m) =




n

m



 (p)

m
(1 − p)

n−m

where

n = number of Bernoulli trials

m = number of successes, and

p = the probability of a success.



Binomial Example

Roll ten 6-sided dice

N = 10

Count the number of ones

p = 1/6

p(m = 3) =




10

3



 

1

6



3



5

6



7

p(m = 3) = 0.1550

The pdf for m successes in ten trials is:
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Binomial pdf in Python

Create a function which

flips a coin n times

with p = probability of success

Example:

p = 0.6

Flip ten coins

Count the number of successes

In the shell window:

1st column = trial number

2nd column = number of ones

from random import random

def binomial(p, n):

   x = 0

   for i in range(0,n):

       if(random.random() < p):

           x += 1

   return(x)

p = 0.6

for i in range(0,5):

    y = binomial(p, 10)

    print(i, y)

shell

0   6

1   5

2   4
3   6

4   5



Uniform Distribution:  
All numbers have equal probability.

There are several Python commands to do this.
y = randrange(6)+1 pick a number from 1..6

y = randrange(1,7,1) pick a random number from 1..6

Die = [1,2,3,4,5,6]

y = choice(Die) pick a random value from Die

Example, the pdf for rolling a fair six-sided die should be:
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Uniform Distribution Example

Add up multiple dice to cast D&D spells:

Insect Swarm:  four 10-sided dice (4d10)

Ice Storm:  two 8-sided dice plus four 6-sided dice (2d8 + 4d6)

Dice(n, m)

roll n dice

with m sides

take the sum

Insect Swarm:

four 10-sided dice (4d10)

Ice Storm:

2d8 + 4d6

from random import randrange

def Dice(n, sides):
   x = 0

   for i in range(0,n):

       x += randrange(1, sides+1)

   return(x)

for i in range(0,5):

    InsectSwarm = Dice(4, 10)

    IceStorm = Dice(2,8) + Dice(4,6)

    print(i, InsectSwarm, IceStorm)

i   InsectSwarm  IceStorm

0       31         22

1       17         17

2       32         25

3       26         23

4       33         18



Exponential Distribution:

Running an Bernoulli trial until you get one success.

Examples would be:

The number of coin tosses until you get a heads (p = 1/2)

The number of times you roll a 6-sided die until you roll a one (p = 1/6)

The number of days you do the dishes until someone notices

The number of days until your car doesn't start

The pdf for an exponential distribution is:

p(n) = p(1 − p)
n−1
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Exponential pdf in Python (take 1)

Use a while-loop

Run an experiment until you get a

success

Matches the definition of an

exponential distribution

Can take a long time when p is

small

Shell Window:

col 1:  trial number

col 2: number of rolls until you get

a 1 on a 6-sided die (p = 1/6)

from random import random

def exponential(p):

    x = 0

    y = 1

    while(y > p):

        x += 1

        y = random()

    return(x)

p = 1/6

for i in range(0,5):

    y = exponential(p)
    print(i, y)

shell

0 18
1 14

2 4

3 2

4 5



Exponential pdf in Python (take 2)

Use the CDF

Pick a random number

from 0 to 1 (y)

Use the CDF to compute x

- cdf = integral of pdf

Gives the same result

Takes fewer clocks

Not as obvious what's

going on

from random import random

from math import ceil, log

def exponential(p):

    y = random()

    x = ceil( -log(1-y) / p )

    return(x)

p = 1/6

for i in range(0,5):

    y = exponential(p)

    print(i, y)

shell

0 1

1 11
2 12

3 1

4 3

    

   



Pascal Distribution: 
Time until r successes for an exponential distribution

Examples:

The number of coin tosses until you get three heads (p = 1/2)

The number of times you roll a 6-sided die until you roll three ones (p = 1/6)

The number of days you do the dishes until three people notice

The number of days until your car doesn't start three times (and you trade it in)

The pdf for a Pascal distribution is

p(x) =




x − 1

r − 1



 pr(1 − p)

x−r
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In Python, repeat the exponential

pdf r times

Example: Roll a 6-sided die until

you get three 1's

p = 1/6

r = 3

In the shell window

Column 1 = trial number

Column 2 = number of rolls

from random import random

from math import ceil, log

def exponential(p):

    y = random()

    x = ceil( -log(1-y) / p )

    return(x)

p = 1/6

r = 3

for i in range(0,5):

    y = 0

    for j in range(0,r):

        y += exponential(p)

    print(i, y)

shell

0    12

1    20

2    9

3    17

4    23



Continuous Random Distributions

You can also do continuous distributions with Python.

Uniform Distribution: Equal probability over a range of (a,b).

Examples:

Modeling a resistor with 5% tolerance:

- R can take any value from 95% to 105% of rated value

- Equal probability over this range

The time that you press a button, measured to 1us, mod ten

Example: uniform distribution over the range of (1,4)

- note: the area must be one to be a valid pdf
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Uniform Distribution in Python

This is a built-in function in Python

A uniform distribution over the range of (0,1) is the function random()

A uniform distribution over the range of (a,b) is the function uniform()

>>> random.random()

0.7870027

>>> random.uniform(5,6)

5.801835



Exponential Distribution:
The time until an event happens

Assumes the event has a fixed probability over any small time interval

Examples:

The duration of a phone call

The time until an atom decays

The time until a customer arrives at a store

The time it takes to serve a customer

The pdf and cdf are:

pdf(t) =





ae−at 0 < t < ∞

0 otherwise

cdf(t) =





1 − e−at 0 < t < ∞

0 otherwise
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Exponential in Python

The cdf lets you compute t with

an exponential distribution

pick y in the range of (0,1)

compute t using the cdf

Shell Window

col 1: trial number

col 2: t with an exponential pdf

mean = 6 seconds

- p = 1/6

from random import random
from math import log

def exponential(p):

    y = random()

    t = - log(1-y) / p

    return(t)

p = 1/6

for i in range(0,5):

    y = exponential(p)

    print(i, y)

shell

0   10.1154

1   14.1735
2    0.8148

3   14.6771

4    6.0039



Gamma Distribution:  
The time until k events happen

Assumes the event has a fixed

probability over any small time interval

Examples include

The duration of k phone calls

The time until k atoms decays

The time until k customers arrive

The pdf for a gamma distribution is

fX = 


ak

(k−1)!

 xk−1e−ax

Example:

Time of three phone calls (k=3)

Each phone call has a mean of one

minute
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Gamma distribution in Python

Find the time of an exponential

distribution k times

Example:

mean = 6 seconds

- p = 1/6

time for three events

- k = 3

Shell Window

col 1: trial number

con 2: time until three events

from random import random
from math import log

def exponential(p):

    y = random()

    t = - log(1-y) / p

    return(t)

p = 1/6

k = 3

for i in range(0,5):

    y = 0
    for j in range(0,k):

        y += exponential(p)

    print(i, y)

shell

 0   19.6494

 1   14.8661

 2    2.4232

 3   18.1395

 4   20.4999



Normal Distribution:
a.k.a.Gaussian distribution

Bell-shaped curve you're probably familiar

with.

The normal distribution is defined by two

terms:

:   The mean or averageµ

:   The standard deviationσ

- a measure of the spread

: The varianceσ2

The pdf for a normal distribution is

f(x) = 1

2πσ2
exp 

−(x−µ)
2

2σ2
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Normal Distribution (cont'd)
Probably the most important distribution in all of statistics

Central Limit Theorem:

Under fairly general assumptions

All distributions converge to a

normal distribution

Normal + Normal = Normal

Example:

Add twelve uniform distributions

Subtract six

The pdf looks very much like a

normal distribution
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Normal Distribution: Area of tail
z-Score

The area of a tail tells you the

probability that y  < x

Find the z-score

- distance to the mean in terms of

standard deviations

Find the area of the tail

- uses the error function

- standard function in Python

Example:

mean = 10

standard deviation = 5

p(y < 3) = ?

from math include erf

x = 10

s = 5

z = (10 - 3) / s

p = ( erf(-z / sqrt(2)) + 1 ) / 2

print('z score = ',z)

print('area of tail = ',p)

shell

 z score = 1.400

 area of tail = 0.0808



Normal Distribution in Python

Python does not have a randn function like Matlab

randn can be approximated

add twelve uniform distributions (variance = 1)

subtract six (mean = 0)

def randn():

    x = -6

    for i in range(0,12):

       x += random.random()
    return(x)

for i in range(0,5):

    y = randn()

    print(i, y)

shell

0   -0.3209

1   -1.0091

2    0.0923

3   -0.0394

4    0.9420



Flickering Candle

Write a program which causes an LED

to flicker

looks like a flickering candle

Use

PWM to set the brightness

A normal pdf to vary the PWM

Change the PWM every 50ms

# Candle Flicker

# Create a flickering LED

# connected to pin 16

from machine import Pin, PWM

from time import sleep_ms

from random import random

Candle = Pin(16, Pin.OUT)

Candle = PWM(Pin(16))

Candle.freq(1000)

def randn():

    x = -6

    for i in range(0,12):
        x += random()

    return(x)

while(1):

    x = 32000 + randn()*10000

    Candle.duty_u16(int(x))

    sleep_ms(50)



Summary

The math library allows you to use

Trig functions

Exponentials

Constants (pi, tau, e)

The random library allows you to 

Generate random numbers

Generate variables with a uniform distribution

With come coding, you can generate other distributions

Exponential

Gamma,

Poisson,

Normal

Other




