
Fun with LCD Graphics

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #13

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction

Once you get some graphics routines working, you can start using the

graphics display to output information. This lecture goes over using the

LCD display to

Output text, such as the voltage or resistance attached to the Pi-Pico

Display graphics, such as the x-y position of the joystick, and

Do animation, such as a bouncing ball or a lunar lander game.

Volt Meter

Turn your PIC into a volt meter

0V to 5V, or

-10V to +10V

Hardware: 0V to +5V

A/D input = (0V, 3.3V)

Reduce the voltage using two resistors

y = 


3.3V

5.0V

 x = 0.660x

y = 


R1

R1+R2


 x

x(t)

(0V, 5V)

ADC2

Pi-Pico

30k

20k
y(t)

Hardware: -10V to +10V Inputs:
Output = 0V to 3.3V

Use three resistors and a weighted average

y = 


3.3V

20V

 x + 1.65

If you have 0V and 3.3V available, rewrite as

y = 0.165x + 0.5(3.3V)

Adding a term times 0V to make the coefficients add up to 1.000

y = 0.165(x) + 0.5(3.3V) + 0.335(0V)

Pick your favorite resistor value, such as R = 5k.

The weighted average then has

Rx =
R

0.165
= 30.3k ≈ 30k

R3.3V =
R

0.5
= 10k

R0V =
R

0.335
= 14.9k ≈ 15k

The following circuit converts

input (x): -10V to +10V

output (y): 0V to +3.3V

In software, the computed votlage is

Vx = 


20V

65,535

 ⋅ A/D − 10

ADC2

Pi-Pico

+3.3V

x(t)

(-10V,+10V)

30k

10k

15k

y

Code:
Input = A/D channel 1

LCD displays

Voltage

-10V to +10V

max voltage

min voltage

Resolution = 4.9mV

20V / 4096

import LCD_24x32 as LCD

from machine import ADC

from time import sleep_ms

a2d0 = machine.ADC(1)

Navy = LCD.RGB(0,0,10)

Yellow = LCD.RGB(150,150,0)

LCD.Init()

LCD.Clear(Navy)

LCD.Box(30, 80, 330, 150, Yellow)

k = 20 / 65535

Vmax = -999

Vmin = 999

while(1):

 a0 = a2d0.read_u16()

 Volt = k*a0 - 10

 if(Volt > Vmax):

 Vmax = Volt

 if(Volt < Vmin):

 Vmin = Volt

 LCD.Text4('Volts:', 50, 100, Yellow, Navy)

 LCD.Number4(Volt, 5, 3, 170, 100, Yellow, Navy)

 LCD.Text4('Vmax:', 50, 170, Yellow, Navy)

 LCD.Number4(Vmax, 5, 3, 170, 170, Yellow, Navy)

 LCD.Text4('Vmin:', 50, 220, Yellow, Navy)

 LCD.Number4(Vmin, 5, 3, 170, 220, Yellow, Navy)

 print(Volt)

 sleep_ms(200)

Ohm-Meter

If you can measure voltage, you can measure

resistance

Convert resistance to voltage

Hardware: A voltage divider works

V = 


R1

R1+R2


 3.3V

R1 = 


V

3.3−V

R2

R1 = 


a0

65535−a0


R2

a0 = raw A/D reading.

Best sensitivity when R1 = R2.

ADC2

Pi-Pico

R1

R2
y(t)

3.3V

Software
Volt Meter &

Ohm-Meter

Resolution = 1 Ohm

R1 = R2 = 1k

Ohm Meter

import LCD_24x32 as LCD

from machine import ADC

from time import sleep_ms

a2d0 = machine.ADC(1)

Navy = LCD.RGB(0,0,10)

Yellow = LCD.RGB(150,150,0)

LCD.Init()

LCD.Clear(Navy)

LCD.Box(30, 80, 330, 150, Yellow)

LCD.Box(30, 180, 330, 250, Yellow)

k = 3.3 / 65535

while(1):

 a0 = a2d0.read_u16()

 Volt = k*a0

 Ohms = a0 / (65535 - a0) * 1000.0

 LCD.Text4('Volts:', 50, 100, Yellow, Navy)

 LCD.Number4(Volt, 5, 3, 150, 100, Yellow, Navy)

 LCD.Text4('Ohms:', 50, 200, Yellow, Navy)

 LCD.Number4(Ohms, 6, 1, 150, 200, Yellow, Navy)

 print(Volt, Ohms)

 sleep_ms(200)

Oscilloscope

Display

y axis: voltage

x axis: time

Hardware: -10V to +10V:

0 = -10V

65535 = +10V

ADC2

Pi-Pico

+3.3V

x(t)

(-10V,+10V)

30k

10k

15k

y

Software: One trick to speed up the program execution time is at each

time-point,

Erase the previous voltage at that time and

Draw in the newly measured voltage

To do this, an a 421x1 array of values is stored (the y-coordinate of the

pixel). When updating the display at time-point x,

The previous value of y(x) is set to the background color, and

The current value of y(x) is set to yellow

This speeds up program execution - although it also means you're erasing

the grid lines over time.

Software:

Set up a 421x1 array (y)

Each sample = 10ms

Y = voltage

Ymin to Ymax

10 to 280

At each time point

erase the last point

Pixel in Navy

draw the current point

in yellow

import LCD

from machine import ADC

from time import sleep_ms

a2d0 = machine.ADC(1)

Navy = LCD.RGB(0,0,10)

Yellow = LCD.RGB(150,150,0)

Grey = LCD.RGB(50,50,50)

Xmin = 50

Xmax = 470

Ymin = 10

Ymax = 280

dX = (Xmax - Xmin)/10

dY = (Ymax - Ymin)/10

LCD.Init()

LCD.Clear(Navy)

for i in range(0,11):

 LCD.Line(Xmin, int(Ymin+i*dY), Xmax, int(Ymin+i*dY), Grey)

 LCD.Line(int(Xmin+i*dX), Ymin, int(Xmin+i*dX), Ymax, Grey)

Y = []

for i in range(Xmin, Xmax+1):

 Y.append(0)

k = (Ymax - Ymin) / 65535

X = Xmin

i = 0

while(1):

 a0 = a2d0.read_u16()

 LCD.Pixel2(int(X), int(Y[i]), Navy)

 Y[i] = k*a0 + Ymin

 LCD.Pixel2(int(X), int(Y[i]), Yellow)

 X += 1

 i += 1

 if(X > Xmax):

 X = Xmin

 i = 0

 sleep_ms(10)

Joystick X&Y

Display the (x,y) position of the joystick

Display X and Y on the LCD

Hardware:

Nothing needs to be added

XY joystick part of Pi-Pico Breadboard

AN0: left-right motion

0V to 3.3V

AN1: up-down motion

0V to 3.3V

3.3V

AN0

AN1

Joystick

Software:

On startup, record X and Y

interprits these as the neutral position

Every 20ms (main loop)

Read X and Y

Erase the old box

color = navy

Draw new box to X & Y

color = yellow

horizontal and vertical to speed up code

Joystick Position

import LCD

from machine import ADC

from time import sleep_ms

a2d0 = machine.ADC(0)

a2d1 = machine.ADC(1)

Navy = LCD.RGB(0,0,10)

Yellow = LCD.RGB(150,150,0)

Grey = LCD.RGB(50,50,50)

LCD.Init()

LCD.Clear(Navy)

k = 300 / 65535

x0 = a2d0.read_u16()

y0 = a2d1.read_u16()

x = 0

y = 0

while(1):

 a0 = a2d0.read_u16()

 a1 = a2d1.read_u16()

 LCD.Box(240,160,240+x,165,Navy)

 LCD.Box(240,160,245,160+y,Navy)

 x = int((a0 - x0)*k)

 y = -int((a1 - y0)*k)

 LCD.Box(240,160,240+x,165,Yellow)

 LCD.Box(240,160,245,160+y,Yellow)

 sleep_ms(20)

Bouncing Ball

Simulate a ball bouncing around the

display

Software:

Actually a fairly involved program.

Acceleration is

0 in the x-direction

-9.8 m/s2 in the y-direction (gravity)

Every 0.1 second (dt), update velocity and position

x
.
(t) = ∫ ẍ(t) ⋅ dt

x(t) = ∫ x
.
(t) ⋅ dt

Code
not the entire program

Use Euler integration

Simple

Works

When you hit a wall

Bounce back

(change sign of velocity)

import LCD

from time import sleep_ms

:

:

while(1):

 ddy = -9.8

 ddx = 0

 dy += ddy*dt

 dx += ddx*dt

 y += dy*dt

 x += dx*dt

 if(x+r > Xmax):

 dx = -abs(dx)

 if(x-r < Xmin):

 dx = abs(dx)

 if(y+r > Ymax):

 dy = -abs(dy)

 if(y-r < Ymin):

 dy = abs(dy)

 LCD.Circle(zx, 320-zy, r, Navy)

 zx = x

 zy = y

 LCD.Circle(x, 320-y, r, Yellow)

 sleep_ms(10)

Lunar Lander Game

Recreate the acade game

Goal:

Land on the target on the planet

With minimal velocity

In the X direction

in the Y direction

The XY joystick controls the thrust

Neutral position = no thrust

Can apply in the X and Y directions

Note: The arcade game also had limited fuel

Not incorporated in the game

Software

The input is thrust

acceleration set by the joystick

L/R: thrust in the x direction.

proportional to joystick position.

U/D: thrust in the y direction

Also proportional to position

Gravity pulls you down

2.35 m/s2 on the moon

Game stops when you hit

y < 0

Lunar Lander

:

:

 while(y > 0):

 fx = a2d0.read_u16()/2000 - x0

 fy = a2d1.read_u16()/2000 - y0

 ddx = fx

 ddy = fy - 2.35

 LCD.Lander(x,300-y,Navy)

 x = x + dx*dt

 y = y + dy*dt

 dx = dx + ddx*dt

 dy = dy + ddy*dt

 LCD.Lander(x,300-y,White)

 LCD.Box(400,300,420,bx,Navy)

 LCD.Box(422,300,442,by,Navy)

 by = int(300-fy*10)

 bx = int(300-fx*10)

 LCD.Box(400,300,420,bx,White)

 LCD.Box(422,300,442,by,White)

 time.sleep(0.01)

 LCD.Text2('Impact',10,100,Yellow, Navy)

 :

 :

Software (cont'd)

Euler integration is used

Simple

Works

Every 10ms

Clear the last lander position and

Clear the last thrust XY display

color = navy

Redraw these in white

faster than redrawing the whole

display

Lunar Lander

:

:

 while(y > 0):

 fx = a2d0.read_u16()/2000 - x0

 fy = a2d1.read_u16()/2000 - y0

 ddx = fx

 ddy = fy - 2.35

 LCD.Lander(x,300-y,Navy)

 x = x + dx*dt

 y = y + dy*dt

 dx = dx + ddx*dt

 dy = dy + ddy*dt

 LCD.Lander(x,300-y,White)

 LCD.Box(400,300,420,bx,Navy)

 LCD.Box(422,300,442,by,Navy)

 by = int(300-fy*10)

 bx = int(300-fx*10)

 LCD.Box(400,300,420,bx,White)

 LCD.Box(422,300,442,by,White)

 time.sleep(0.01)

 LCD.Text2('Impact',10,100,Yellow, Navy)

 :

 :

Summary

Once you have a graphics display, getting information out is pretty easy, and

the results look good. There are limitations on the graphics display,

however:

It takes about 100ms to clear the entire display. This causes flicker and slows

down the entire program if you keep clearing and redrawing images.

Text can be output - but the prettier and larger fonts take up a lot of program

memory and are slow to output.

Graphics can be output - but horizontal and vertical lines are a lot faster to

update than diagonal lines.

It's usually faster to erase part of an image (redraw using the background color)

than to clear the entire display.

