
Timing & the Time Library

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #8

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

In this lecture, we look things related to time.

This includes measuring:

The time between events

The width of a pulse

The period of a square wave

- and hence its frequency

We'll also look at

How to generate a square wave

- Set the frequency and duty cycle

With this, we'll be able to

Measure your reflex time,

Measure distance using an ultrasonic range sensor,

Measure resistance, capacitance, and temperature using a 555 timer, and

Play a tune with your Pi-Pico

XII

VI

IIIIX

I

II

IV

VVII

VIII

X

XI

Time Library

One of the more useful libraries

You can see the functions included by typing:

>>> import time

>>> dir(time)

['__class__', '__name__', '__dict__', 'gmtime', 'localtime', 'mktime',

'sleep', 'sleep_ms', 'sleep_us', 'ticks_add', 'ticks_cpu',

'ticks_diff', 'ticks_ms', 'ticks_us', 'time', 'time_ns']

To measure time, the funcitons we're going to use are:
ticks_ms time since power up in ms

ticks_us time since power up in us

ticks_cpu time since power up in cpu clocks (varies with uP)

recommended you don't use ticks_cpu

How Long Does sleep(1) Take?

ticks_us() records time sinnce reset

Record the time prior to sleep(1)

Record the time after

The time difference is the execution time

dt = 1,000,064us

note: This also includes the execution

time of ticks_us()

from time import ticks_us, sleep

x0 = ticks_us()

sleep(1)

x1 = ticks_us()

print(x1 - x0)

shell

1000064

How Long Does sleep(1) Take (better)

The last measure is a little high

Also includes ticks_us() execution time

You can subtract this out

sleep(1) = 1,000,004us

ticks_us() = 60us

from time import ticks_us, sleep

x0 = ticks_us()

sleep(1)

x1 = ticks_us()

x2 = ticks_us()

print(x1 - x0 - (x2-x1))

shell

1000004

How Long Does sleep(10) Take?

sleep(10) takes

10,000,006us

Note:

The sleep() function is really accurate!

We can measure time to 1us (!!)

from time import ticks_us, sleep

x0 = ticks_us()

sleep(10)

x1 = ticks_us()

x2 = ticks_us()

print(x1 - x0 - (x2-x1))

shell

10000006

OK - so now that we can measure time, let's have some fun with it.

Button Press Game:

What's the shortest time I can press and release a button?

Wait until you press the button (value goes to zero). Record that time.

Then wait until you release the button (value goes to one). Record that time.

The difference in time is how long you held the button down.

Button (GP15)

Button Pressed Button Released

Duration

Button Press Game: Measure the time the button is held down.

Try to get the lowest score.

In Code:

In six attempts

Shortest time was 39,496us

60us high due to ticks_us()

With a little more code,

The time of ticks_us() can be

removed

The best score can be updated

from time import ticks_us, ticks_ms

from machine import Pin

Button = Pin(15, Pin.IN, Pin.PULL_UP)

while(1):

 while(Button.value() == 1):

 pass

 x0 = ticks_us()

 while(Button.value() == 0):

 pass

 x1 = ticks_us()

 print(x1-x0)

shell

51494

48585

57623

55358

60112

39496

Reaction Time Game:

For some more fun, determine my reflex time.

Start out by pressing a button.

3 seconds later, turn on the buzzer

As soon as the buzzer turns on, press the button

The time delay from hearing the buzzer and pressing the button is your

reflex time.

Buzzer

Button

Button Pressed

3000ms delay

Reaction Time

Button Pressed

(start game)

Reaction Time Game: Measure the time between when the buzzer turns on and you press a button

In code:

Wait for a button to be pressed and

released

starts the 3 second timer

The buzzer then turns on

record that time

Wait for a button to be pressed

record that time

Time difference = reaction time

Best score = 125.309us

from time import ticks_us, sleep_ms

from machine import Pin

Buzzer = Pin(13, Pin.OUT)

Button = Pin(15, Pin.IN, Pin.PULL_UP)

while(1):

 while(Button.value() == 1):

 pass

 while(Button.value() == 0):

 pass

 sleep_ms(3000)

 Buzzer.value(1)

 x0 = ticks_us()

 while(Button.value() == 1):

 pass

 x1 = ticks_us()

 Buzzer.value(0)

 print(x1 - x0)

shell

134063

160489

125309

Code Improvements
Make the delay random rathern than 3.000 seconds fixed

Record your best time

Keep track of mean and standard deviation...

Note: Once you can measure your reflex time, you can ask...

- What frequency works best?

- Is a solid tone or a series of beeps better?

- Do you respond to light faster than sound?

- What color of light are people most responsive to?

- Do your reflexes improve after exercise?

- What affect does caffine have on your reflexes?

- etc.

New Problem: Generate a Fixed Frequency

Use time.sleep()

Ties up the processor while waiting

Use the PWM function from library machine

Better way to do it

Uses hardware to set the frequency rather than software

Leaves the processor free to do other stuff

For example, to set up GP18 to output a 100Hz square wave

off time = 5mson-time = 5ms

= 50%

100Hz Square Wave

Hardware:

Several ways to connect a Pico to a speaker:

With a 330 Ohm wire (to limit current)

- Easy - not too loud

With an NPN transistor

- Louder, more annoying

- Can increase voltage to 5V or more

With an H-bridge

- Loud, annoying

- Can increase current to 3A

- Can drive speaker forward & back Pi-Pico

Pi-Pico GP18

330

10mA 8 Ohm

8 Ohm

5V

330

7.9mA

550mA

GP18

Option 1

Option 2

2SC6144

NPN

Pi-Pico
GP18

GP19

IN0

IN1

A

B

Option 3

H-Bridge

Software:
GP18 drives the speaker

The code would be:

Pin18 is a PWM output

Frequency = 100Hz

Duty cycle = 50%

note:

100% duty cycle = 65,535

Hardware takes care of the rest

from machine import Pin, PWM

Spkr = Pin(18, Pin.OUT)

Spkr = PWM(Pin(18))

Spkr = freq(100)

Spkr.duty_u16(32768)

while(1):

 pass

Software (take 2)

duty_u16() maintains a constant duty cycle

Duty cycle doesn't change with frequency

- 0 0% duty cycle square wave (off)

- 32768 50% duty cycle square wave

- 65535 100% duty cycle square wave (on)

duty_ns() maintains constant pulse width

On-time doesn't change with frequency

Example: Pulse width = 5ms (fixed)

Spkr = Pin(18, Pin.OUT)

Spkr = PWM(Pin(18))

Spkr = freq(100)

Spkr.duty_ns(5_000_000)

Constant Duty Cycle

Constant Pulse Width

Turning a speaker on & off

On:

Set the duty cycle to 50%

duty_u16(32,768)

Off:

Set the duty cycle to 0% (0)

duty_u16(0)

from machine import Pin, PWM

from time import sleep_ms

Spkr = Pin(18, Pin.OUT)

Spkr = PWM(Pin(18))

Spkr = freq(100)

Spkr.duty_u16(32768)

while(1):

 Spkr.duty_16(32768) # buzzer on

 sleep_ms(500)

 Spkr.duty_16(0) # buzzer off

 sleep_ms(500)

3-Key Piano: Now that we can play a single note, play three different notes

When GP20 is 0 (button pressed), play 220Hz

When GP21 is 0, play 250Hz

When GP22 is 0, play 280Hz

Otherwise, remain silent

Pi-Pico

GP18
GP20

GP21

GP22

B0

B1

B2

330

Speaker

Code:

Pull-up resistors for buttons

Press = logic 0

Check buttons

if-statements

Sets the frequency

Sets the duty cycle

Keep playing while button

pressed

Turn off speaker if no button

is pressed

import time

from machine import Pin, PWM

Construct PWM object, with LED on Pin(25)

Spkr = PWM(Pin(18))

B0 = Pin(20, Pin.IN, Pin.PULL_UP)

B1 = Pin(21, Pin.IN, Pin.PULL_UP)

B2 = Pin(22, Pin.IN, Pin.PULL_UP)

while(1):

 if(B0.value() == 0):

 Spkr.freq(220)

 Spkr.duty_u16(32768)

 while(B0.value() == 0):

 pass

 if(B1.value() == 0):

 Spkr.freq(250)

 Spkr.duty_u16(32768)

 while(B1.value() == 0):

 pass

 if(B2.value() == 0):

 Spkr.freq(280)

 Spkr.duty_u16(32768)

 while(B2.value() == 0):

 pass

 pwm.duty_u16(0)

What happens if two buttons are pressed?

Piano does something

Code dictates what happens

import time

from machine import Pin, PWM

Construct PWM object, with LED on Pin(25)

Spkr = PWM(Pin(18))

B0 = Pin(20, Pin.IN, Pin.PULL_UP)

B1 = Pin(21, Pin.IN, Pin.PULL_UP)

B2 = Pin(22, Pin.IN, Pin.PULL_UP)

while(1):

 if(B0.value() == 0):

 Spkr.freq(220)

 Spkr.duty_u16(32768)

 while(B0.value() == 0):

 pass

 if(B1.value() == 0):

 Spkr.freq(250)

 Spkr.duty_u16(32768)

 while(B1.value() == 0):

 pass

 if(B2.value() == 0):

 Spkr.freq(280)

 Spkr.duty_u16(32768)

 while(B2.value() == 0):

 pass

 pwm.duty_u16(0)

Super Mario Brothers Theme:

Play the first four bars of SuperMario Brothers:

4

4

Translation:

Play E4 for 1/4 beat

Play E4 for 1/4 beat

Play E4 for 1/2 beat

pause for 1/4 beat

Play C4 for 1/4 beat

Play E4 for 1/2 beat

Play G4 for 1/2 beat

pause for 1/2 beat

Play G3 for 1/2 beat

pause for 1/2 beat

Option 1: Create a subroutine for each note

Create a subroutine which plays a given note for a fix duration:

Hz is the frequency of the note in Hz

Eighths sets the duration of the note in 1/8th notes

The last 50ms of each note is silent, allowing you to hear the same note played

twice:

def Play(Hz, Eighths):

 if(Hz > 0):

 Spkr.freq(int(Hz))

 Spkr.duty_u16(32768)

 else:

 Spkr.duty_u16(0)

 time.sleep_ms(75 * Eights - 50)

 Spkr.duty_u16(0)

 time.sleep(0.05)

With this routine, you could play

100Hz for 4/8th beat, then

200Hz for 7/8th beat

Go silent for 4/8th beat

300Hz for 4/8 beat

with the following program:

Play(100, 4)

Play(200, 7)

Play(0, 4)

Play(300,4)

Play(0,4)

100Hz

4/8 beats

200Hz

7/8 beats

silent
4/8 beats

300Hz

4/8 beats
silent

4/8 beats

Output of the Play() subroutine

Adding a bunch of play() routines

plays the tune

place in a while(1) loop

pause one second between songs

from time import sleep_ms

from machine import Pin, PWM

Spkr = PWM(Pin(18))

def Init():

 Spkr.freq(100)

 Spkr.duty_u16(0)

def Play(Hz, Eighths):

 if(Hz > 0):

 Spkr.freq(int(Hz))

 Spkr.duty_u16(32768)

 else:

 Spkr.duty_u16(0)

 sleep_ms(75 * Eights - 50)

 Spkr.duty_u16(0)

 sleep_ms(50)

Init()

while(1):

 play(E4, 2)

 play(E4, 2)

 play(E4, 4)

 play(0, 2)

 play(C4, 2)

 play(E4, 4)

 play(G4, 4)

 play(0, 4)

 play(G3, 4)

 play(0, 4)

 sleep_ms(1000)

Placing the tune into an array is

more stylish

Set the notes and duration

Allows different tunes by

changing two lines of code

from time import sleep_ms

from machine import Pin, PWM

Spkr = PWM(Pin(18))

def Init():

 Spkr.freq(100)

 Spkr.duty_u16(0)

def Play(Hz, Eighths):

 if(Hz > 0):

 Spkr.freq(int(Hz))

 Spkr.duty_u16(32768)

 else:

 Spkr.duty_u16(0)

 sleep_ms(75 * Eights - 50)

 Spkr.duty_u16(0)

 sleep_ms(50)

G3 = 195

C4 = 262

E4 = 330

G4 = 392

Notes = [E4, E4, E4, 0, C4, E4, G4, 0, G3, 0]

Dur = [2, 2, 4, 2, 2, 4, 4, 4, 4, 4]

def Play_Tune():

 for i in range(0, len(Notes)):

 Play(Notes[i], Dur[i])

Init()

while(1):

 Play_Tune()

 time.sleep(1)

Measuring Pulse Width

A little more stylish way to measure a pulse width is to use the

time_pulse_us() function in library machine.

The format for using this funciton is:
 Tp = time_pulse_us(17, 1, 100_000) # time of a positive pulse

 Tm = time_pulse_us(17, 0, 100_000) # time of a negative pulse

The first number (17) is the pin you're trying to measure.

The second number (1, 0) indicated whether you're measuring a positive pulse

(1) or negative pulse(0)

The third number is the max time in microseconds. If a pulse isn't detected

withing this time it kicks out rather than being stuck in an infinite loop.

negative pulse (0) positive pulse (1)

time_pulse_us() lets you measure the width of a negative or positive pulse

Example,
Measure the pulse width of pin #17 (positive pulse default)

Measuring the negative pulse (0)

- Time the button was held down

Time-out if longer than 5,000,000us

Shortest time was 39,496us

from machine import Pin, time_pulse_us

Button = Pin(17, Pin.IN, Pin.PULL_UP)

while(1):

 x = time_pulse_us(17, 0, 5_000_000)

 print(x)

shell

51494

48585

57623

55358

60112

39496

Ultrasonic Range Sensor:

With this funciton you can measure distance using an ultrasonic range

sensor.

This device has four pins:

Vcc: input: +5V

Trig: input: Square wave from the RPi-Pico

Echo: output: Pulse to the RPi-Pico (note: you need to drop this down to 3.3V)

Gnd: input: 0V

Each time you sent from the range sensor. The time it takes for the sound to

return is the duration of the pulse on Echo. For example, if Trig is a 20Hz

square wave, the signal on Echo might look like this:

The pulse width is a measure of distance to an object. Assuming the speed

of sound is 343 m/s, each microsecond of pulse width corresponds to a

distance of

2d = (343m
s) ⋅ (1µs)

d = 171.5µm

(the 2 is due to the sound having to travel to and back from the object - so

the effective distance the sound travels is 2d)

Vcc

Trig

Echo

gnd

+5V

3.3k

1.8k
GP17

GP19

Pi-Pico

Sound

Echo

Object

distance

5V 3.3V

With the range sensor connected to pins 17 (trigger) and 19 (echo), the

program would look like:

from machine import Pin, PWM, time_pulse_us

from time import sleep_ms

TRIG = 17

ECHO = 19

def setup():

 global p_Trig, p_Echo

 p_Trig = Pin(TRIG, Pin.OUT)

 p_ECHO = Pin(ECHO, Pin.IN)

 p_Trig = PWM(Pin(TRIG))

 p_Trig.freq(50)

 p_Trig.duty_ns(1000)

 p_Echo = Pin(ECHO, Pin.IN, Pin.PULL_UP)

def distance():

 mm = time_pulse_us(ECHO, 11) * 0.1715

 return mm

Main Routine

setup()

while(1):

 dis = distance()

 print (dis, 'mm')

 sleep_ms(300)

Measure Period (or frequency)

With time_pulse_us() you can measure the positive or negative pulse of a

square wave. Add the two together and you get the period.

negative pulse (0) positive pulse (1)

Measure the period of a 100Hz square wave
Set up GP18 to be

- a 100Hz square wave with

- a positive pulse of 10ms (10,000 us)

Set up GP17 to be an input pin

Short pin 18 to pin 17

Measure the period of the signal on GP17

from machine import Pin, PWM, time_pulse_us

from time import sleep_ms

buzzer = Pin(18, Pin.OUT)

buzzer = PWM(Pin(18))

buzzer = freq(100)

buzzer.duty_ns(10000)

Button = Pin(17, Pin.IN, Pin.PULL_UP)

while(1):

 x = time_pulse_us(17, 1, 100_000)

 y = time_pulse_us(17, 0, 100_000)

 print('Period = ,x+y,' us')

 sleep_ms(100)

shell

Period = 9808 us

Measure Resistance (LM555 Timer)

If you can measure frequency, you can measure resistance.

The following 555 timer outputs a square wave where

Ton = (R1 + R2) ⋅ C ⋅ ln(2)

Toff = R2 ⋅ C ⋅ ln(2)

If R1 and C are known, you can

determine R2 by measuring the

period (or the off-time)

5V

Vcc Reset

OutputDischarge

Threshold

Trigger

R1

R2

C

7

6

2

1

8 4

3

5V

V1

V2

V3 5V Square Wave

3.3V Square Wave

1.8k

3.3k

to RPi-Pico

555 Timer

Assume R1 = 10k, R2 = 100k, and C = 0.1uF. Then

Toff = 6931.47µs

R2 = 100kΩ ⋅
Toff

6931.47µs

 = 14.427 ⋅ Toff(µs)

Code:

from machine import Pin, PWM, time_pulse_us

from time import ticks_cpu, ticks_ms, ticks_us

T555 = Pin(17, Pin.IN, Pin.PULL_UP)

while(1):

 Toff = time_pulse_us(17, 0, 100_000)

 R2 = 14.427 * Toff

 print(R2)

 sleep_ms(100)

Measure Temperature (555 Timer)

If you can measure resitance, you can measure tempeature. Replace R2 with

a thermistor, such as

R = 1000 ⋅ exp
3905

T+273
− 3905

298

Ω

and you can compute temperature in degees C (T) as a funciton of pulse

width.

T =

3905

ln
R

1000

 +

3905

298

 − 273

or

T =

3905

ln

14.427⋅Toff

1000

+
3905

298

− 273

Code
from machine import Pin, PWM, time_pulse_us

from time import ticks_cpu, ticks_ms, ticks_us

from math include log

T555 = Pin(17, Pin.IN, Pin.PULL_UP)

while(1):

 Toff = time_pulse_us(17, 0, 100_000)

 R2 = 14.427 * Toff

 T = 3905 / (log(R/1000) + (3905/298)) - 273

 print(T)

 sleep_ms(100)

This is termed theoretical calibration: given the reading, go backwards

through the calculations to get the temeprature.

Vary Brightness of LED

Finally, by varying the duty cycle, you can vary the brightness of an LED.

The following code makes the LED on GP17 vary from 0% on to 100% on

then back over and over again

10% 90% 10%

Brightness

GP17

10ms

100Hz

Code:
LED connected to GP17

0% to 100% duty cycle

from time import sleep_ms

from machine import Pin, PWM

LED = Pin(17, Pin.OUT)

LED = PWM(Pin(17))

LED.freq(100)

x = 0

dx = 100

while(1):

 x += dx

 LED.duty_u16(x)

 if(x > 65000):

 dx = -abs(dx)

 if(x <= 0)

 dx = abs(dx)

 sleep_ms(1)

Summary:

The Pi-Pico is really quite versitile. With it, you can

Output square waves at a given frequency and duty cycle

Measure time to one micro-second

Mesure the width of a pulse (positive or negative),

amoung other things.

Add in a sensor, and you can measure distance, temperature, light, etc.

