Binary Inputs

ECE 476 Advanced Embedded Systems
Jake Glower - Lecture #6

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Introduction:
Each GPIO pin can be

« Binary Outputs (last lecture), or
 Binary Inputs (this lecture)

as well as other functions (coming later).

Similar to our last lecture
« OV isread as logic O
« 3.3V isread as logic 1

Do not apply 5V to the GP pins
Doing so might destroy the Pico board.

TFT.SCK
TFT.MOSI
TFT.MISO

TFT.CS

TFT.DC

TFT.RST
TFT.SDA
TFT.SCL

TFT.RST
TFT.INT
RGB LED

Buzzer

Button1
Button2

GPO —
GP1 —
GND —
GP2 —
GP3 —
GP4 —
GP5 —
GND —
GP6 —
GP7 —
GP8 —
GP9 —
GND —
GP10—
GP11—
GP12—
GP13—
GND —
GP14—
GP15—

USB

© 0 N o o » 0w N =

40
39
38

37
36
35
34
33
32
31
30
29

28
27

26
25
24
23
22

21

— VBUS
— VSYS
— GND
— 3.3V_EN

— 3.3V
— ADC_VREF
— GP28 ADC2

—— GND

L GP27 ADC1(Y)
—— GP26 ADCO(X)
- RUN

— GP22

— GND

—— GP21

— GP20

— GP19

— GP18

— GND

— GP17 LED2

— GP16 LED1

This lecture looks at
 Converting push buttons to binary (0V & 3.3V) logic levels
- Converting voltages, resistance's, and temperatures to OV / 3.3V logic levels,
« Building a random number generator using a push-button
« Counting edges & building a voting machine
« Counting multiple edges and writing a Hungry-Hungry Hippo game.

Reading Push Buttons:

The Pi1-Pico Breadboard has two push buttons
- GP15
- GP14

To read the buttons, these need to be inputs:

Three options exist:

from machine import Pin

Button = Pin (15, Pin.IN)
Button = Pin (15, Pin.IN, Pin.PULL_UP)
Button = Pin (15, Pin.IN, Pin.PULL_DOWN)

Button = Pin(15, Pin.IN)
« Pin 15 is input and floating

- Hardware is responsible for setting the voltage to OV or 3.3V

Button = Pin(15, Pin.IN,Pin.PULL_UP)
« A 50-80k resistor ties pin 15 to +3.3V

Button = Pin(15, Pin.IN,Pin.PULL_DOWN)

« A 50-80k resistor ties pin 15 to +0V

Pi-Pico

GP15 f@a—

none

Pi

-Pico

50k - 80k

+3.3V

GP15

Pi-Pico

PULL_UP

GP15

50k - 80k

PULL_DOWN

Both pull-up and pull-down can be used along with a momentary switch to
read if the switch is pressed or not:

« Pull-Up: GP15 is logic 1 if A 1s not pressed and O if A is pressed
« Pull-Down: GP15 is logic 1 if A is pressed and O if A is not pressed

Pi-Pico Pi-Pico
+3.3V B
GP15 |
- O O |+3.3V
50k - 80k A
1 | 50k - 80k
el
GP15 o 6—l

PULL_UP PULL_DOWN

In general, the pull-up setting 1s safest
« Pushing the button will not damage the Pico chip - you're just connecting it to
ground
The pull-down setting can damage your Pico board:
« If you accidentally use +5V rather than +3.3V, pressing the button will fry your
Pico board

Stick with the pull-up option with the switch tied to ground.

Pi-Pico AN Pi-Pico
+3.3V B
GP15 —

- O O— +3aV
50k - 80k A /

1 50k - 80k

GP15

PULL_UP / PULL_DOWN

Sample Code: The following program displays
1 when button 15 is not pressed
« 0 when button 15 is pressed

from machine import Pin
from time import sleep_ms

Button = Pin (15, Pin.IN, Pin.PULL_UP)
while (1) :
X = Button.value ()

print (X)
sleep_ms (100)

shell

(@]

[eNeNGN N -l Ol ®)

Sidelight: Boolean Logic with Momentary Switches

NOT' 10k

« Place the switch on the low side

« Pressing the switch results in Y=0
« Y =not A

' B
NAND: sa— AL 656 o]

« Place switches in series
« Pressing both switches results in Y=0

NOR
- Place switches in parallel o VA A
. . . . ‘ 1 |
« Pressing either switch results in Y=0 sav—ANN o o—!
1

Anything you can do in hardware you can do in software
- and visa versa

Not
You can also buy -
« Normally Open Switches

- Normally Closed Switches
« These let you implenent A' and B' in hardware

With NOT, NAND, and NOR, }@D
« You can implement logic funcitons in hardware]

« You can also implement these in software

It's you choice as the design engineer which you use NOR

Reading Voltage
« X>2.3V

Use a comparitor (MCP602 op-amp works)
« Output 3.3V when X > 2.3V
« Output OV when X < 2.3V

Note: the op-amp used needs
« To opeate from a single power supply
« To operate over a OV - 3.3V range
« Rail-to-rail outputs
An MCP602 does this
« LM741 or LM833 do not.

+3.3V

X L
|

2.3V

MCP602

X>2.3V

o

Reading Resistance:
« R > 2300 Ohms

Trick: Change the problem
- Convert resistance to a voltage
« Use the previous circuit

Example:
« Use a voltage divider
- With a 2k resitor
« At R =2300 Ohms

— R —
X =(E)33V = 1765V

« Switch at 1.765 Volts

Y

R > 2300

2300 Ohms

Reading Temperature:
« T>15C

Trick

- Convert temperature to resistance
« Find the R(15C), then
« Use the previous circuit

Example: Output 3.3V for T > 15C

Pick a thermistor, such as

R =1000 - exp (e 3905) Q

T+273 298
At 15C
« R=1576 Ohms
« Vx =1.454V

+3.3V

+3.3V

X L

Y
MCP602
R 1.454V -+ T>15C

2000

1

3.3V Vy

\
ov

degrees C

~
[6)]
N
<

Level vs. Edge-Sensitive Programs
Once you can read the input

* button

« voltage

« temperature

Have that input affect the program

Level Sensitive Programs
« Operation depends upon the logic level

Edge Sensitive Programs

 Operations happen on rising and falling
edges

N NN S

Do A while high Do B while low

Rising Edge Falling Edge
Do A Do B

Level Sensitive: Debate Moderator
- Prevent candidates from talking over each

other Microphone

Connect a microphone to a binary input
« 3.3V: Candidate is speaking
- OV: Candidate 1s listenting

N N S

Speaking Listening
do nothing

Initially, each candidate is given 5 min
- When you speak, your clock runs down
« When silent, your clock remains constant

decrement time

5 min Time

When your time reaches zero, your
microphone cuts off

Code: Debate Moderator

Each candidate is given 5 minutes
« 300 seconds

Every 100ms
« Check each microphone
- If speaking, decrement their time

When you reach zero
« Turn off the microphone
* (not in code)

Debate Moderator
from machine import Pin
from time import sleep_ms

ButtonA = Pin (15, Pin.IN,
ButtonB = Pin (14, Pin.IN,

ATime = 300.0
BTime =

while (1) :
if (ButtonA.value () ==
if (ATime > 0):
ATime —-= 0.1
if (ButtonB.value () =
1f (BTime > O0) :
BTime -= 0.1
print (ATime, BTime)
sleep_ms (100)

Pin.PULL_UP)
Pin.PULL_UP)

Edge Sensitive Program: Voting Machine
A second type of program counts edges
« Action only takes place during the rising Candidate A

edge and/or falling edge of a signal
GP15
Example: Voting Machine
« Count rising edges on GP15
- Candidate A A= A=2 A=3
« Count rising edges on GP14
- Candidate B
Candiate B
GP14

Voting Machine with One Candidate

from machine import Pin
from time import sleep_ms

Use two wait-loops

« Wait until button is pressed

- Button goes to 0
« Wait until button is released

Button = Pin (15, Pin.IN, Pin.PULL_UP)

Count = 0
print ('Press and release button to count')

- Button goes to 1 sl Le (L
while (Button.value () == 1) :
pass
while (Button.value () == 0):
The rising edge has been detected pass

Count += 1
- Add one vote (one count) print (Count)

Voting Machine with Two Candiates

Look for a O to 1 transition
- If the current reading is a 1, and
« The previous reading was a 0

you just detected a rising edge.

Signal

Current Reading 0O O 0 1 1 1 1 0 0 0 0 0 1 1
Previous Reading N 0 0 0 1 1 1 1 0 0 0 0 0 1
rising edge rising edge

A rising edge is detected when the current signal is 1 and its previous value was 0

Code:
Vote for A if

e Current value is 1 and
« Previous value was 0

Vote for B if
« Current value 1s 1 and
« Previous value was 0

Voting Machine
input 14 and 15

from machine import Pin
from time import sleep_ms

PlayerA = Pin (15, Pin.IN, Pin.PULL_UP)
PlayerB = Pin (14, Pin.IN, Pin.PULL_UP)

A =1
B =1
Na = 0
Nbo = 0
time = 0
while (1) :
ZzA = A
A = PlayerA.value ()
zB = B
B = PlayerB.value ()
if((A==1) & (zA==0)) :
Na += 1
if((B==1) & (zB==0)) :
Nb += 1

print ('Votes for A ',Na, '
sleep_ms (100)

Votes for B

', Nb)

Hungry-Hungry Hippo

https://youtu.be/Rf3ow_DdmtE?feature=shared

Finally, let's use the push buttons to play a game
of Hungry-Hungry Hippo
« Each player starts with 10.00 seconds

« Each player presses their button as fast as they
can, with each button release (rising edge) tallied

« Once 10 seconds is over, the game is over.

This 1s similar to a voting machine, except
 The time is limited to 10 seconds.
« Once time 1s over, stop counting.
« Sample every 10ms so you don't miss points

Flags

This program uses a flag
 Flags indicate something happened
 Such as a button press

The score is only updated on scores
- rather than every 10ms
- as indicated by flag==
- makes the display prettier

from machine import Pin
from time import sleep_ms

PlayerA = Pin (15, Pin.IN, Pin.PULL_UP)
PlayerB = Pin(14, Pin.IN, Pin.PULL_UP)

A =B=1
Na = Nb = time = flag = 0

print ('Press buttons to count')

while (time < 10):

zA = A

A = PlayerA.value ()

zB = B

B = PlayerB.value()

if((A==1) & (zA==0)):
Na += 1
flag = 1

if((B==1) & (zB==0)):
Nb += 1
flag = 1

if(flag == 1) :
print (Na, Nb)
flag = 0

sleep_ms (10)
time += 0.01

print ('Game Over')
if (Na > Nb) :

print ('Player A Wins')
elif (Nb > Na) :

print ('Player B Wins')
else:

print ('Tie'")

Summary
Each I/0 pin can be set up as a binary input or binary output. For binary
inputs

« OV is read as logic 0,

« 3.3V isread as logic 1, and

« 5V may destroy your Pico board (don't do it)

These inputs can control a program's flow
« Using the level of the signal (logic 1 or 0), or
« Using the edges of the signal (rising or falling)

