
Binary Inputs

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #6

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

Each GPIO pin can be

Binary Outputs (last lecture), or

Binary Inputs (this lecture)

as well as other functions (coming later).

Similar to our last lecture

0V is read as logic 0

3.3V is read as logic 1

Do not apply 5V to the GP pins
Doing so might destroy the Pico board.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15 GP16

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28

GND

GP27

GP26

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

TFT.SCK

TFT.MOSI

TFT.MISO

TFT.CS

TFT.DC

TFT.RST

TFT.RST

TFT.INT

TFT.SDA

TFT.SCL

RGB LED

Buzzer

LED1

LED2Button1

Button2

ADC0(X)

ADC1(Y)

ADC2

ADC_VREF

USB

This lecture looks at

Converting push buttons to binary (0V & 3.3V) logic levels

Converting voltages, resistance's, and temperatures to 0V / 3.3V logic levels,

Building a random number generator using a push-button

Counting edges & building a voting machine

Counting multiple edges and writing a Hungry-Hungry Hippo game.

Reading Push Buttons:

The Pi-Pico Breadboard has two push buttons

GP15

GP14

To read the buttons, these need to be inputs:

Three options exist:

from machine import Pin

Button = Pin(15, Pin.IN)

Button = Pin(15, Pin.IN, Pin.PULL_UP)

Button = Pin(15, Pin.IN, Pin.PULL_DOWN)

Button = Pin(15, Pin.IN)

Pin 15 is input and floating

Hardware is responsible for setting the voltage to 0V or 3.3V

Button = Pin(15, Pin.IN,Pin.PULL_UP)

A 50-80k resistor ties pin 15 to +3.3V

Button = Pin(15, Pin.IN,Pin.PULL_DOWN)

A 50-80k resistor ties pin 15 to +0V

+3.3V

50k - 80k

50k - 80k

Pi-Pico Pi-Pico Pi-Pico

GP15

GP15

GP15

none
PULL_UP PULL_DOWN

Both pull-up and pull-down can be used along with a momentary switch to

read if the switch is pressed or not:

Pull-Up: GP15 is logic 1 if A is not pressed and 0 if A is pressed

Pull-Down: GP15 is logic 1 if A is pressed and 0 if A is not pressed

+3.3V

50k - 80k

50k - 80k

Pi-Pico Pi-Pico

GP15

GP15

PULL_UP PULL_DOWN

+3.3V

A

B

In general, the pull-up setting is safest

Pushing the button will not damage the Pico chip - you're just connecting it to

ground

The pull-down setting can damage your Pico board:

If you accidentally use +5V rather than +3.3V, pressing the button will fry your

Pico board

Stick with the pull-up option with the switch tied to ground.

+3.3V

50k - 80k

50k - 80k

Pi-Pico Pi-Pico

GP15

GP15

PULL_UP PULL_DOWN

+3.3V

A

B

Sample Code: The following program displays

1 when button 15 is not pressed

0 when button 15 is pressed

from machine import Pin

from time import sleep_ms

Button = Pin(15, Pin.IN, Pin.PULL_UP)

while(1):

 X = Button.value()

 print(X)

 sleep_ms(100)

shell
0

0

0

1

1

1

0

0

0

Sidelight: Boolean Logic with Momentary Switches

NOT:

Place the switch on the low side

Pressing the switch results in Y=0

Y = not A

NAND:

Place switches in series

Pressing both switches results in Y=0

NOR

Place switches in parallel

Pressing either switch results in Y=0

Y' = A A
10k

3.3V

Y' = AB A
10k

3.3V

Y' = A+B A
10k

3.3V

B

Anything you can do in hardware you can do in software
and visa versa

You can also buy

Normally Open Switches

Normally Closed Switches

These let you implenent A' and B' in hardware

With NOT, NAND, and NOR,

You can implement logic funcitons in hardware

You can also implement these in software

It's you choice as the design engineer which you use

Not

NAND

NOR

Reading Voltage
X > 2.3V

Use a comparitor (MCP602 op-amp works)

Output 3.3V when X > 2.3V

Output 0V when X < 2.3V

Note: the op-amp used needs

To opeate from a single power supply

To operate over a 0V - 3.3V range

Rail-to-rail outputs

An MCP602 does this

LM741 or LM833 do not.

+3.3V

MCP602

X

2.3V

Y

X > 2.3V

Vy

Vx

0V

3.3V

2.300V

Reading Resistance:
R > 2300 Ohms

Trick: Change the problem

Convert resistance to a voltage

Use the previous circuit

Example:

Use a voltage divider

With a 2k resitor

At R = 2300 Ohms

X =

R

R+2000

 3.3V = 1.765V

Switch at 1.765 Volts

+3.3V

MCP602

X

1.765V

Y

+3.3V

R

2000

R > 2300

Vy

Vx

0V

3.3V

R

2300 Ohms

1.765V

Reading Temperature:
T > 15C

Trick

Convert temperature to resistance

Find the R(15C), then

Use the previous circuit

Example: Output 3.3V for T > 15C

Pick a thermistor, such as

R = 1000 ⋅ exp
3905

T+273
−

3905

298

Ω

At 15C

R = 1576 Ohms

Vx = 1.454V

+3.3V

MCP602

X

1.454V

Y

+3.3V

R

2000

T > 15C

degrees C

Vy3.3V

0V
Vx

1.454V

15C

Level vs. Edge-Sensitive Programs

Once you can read the input

button

voltage

temperature

Have that input affect the program

Level Sensitive Programs

Operation depends upon the logic level

Edge Sensitive Programs

Operations happen on rising and falling

edges

Rising Edge

Do A
Falling Edge

Do B

Do A while high Do B while low

Level Sensitive: Debate Moderator
Prevent candidates from talking over each

other

Connect a microphone to a binary input

3.3V: Candidate is speaking

0V: Candidate is listenting

Initially, each candidate is given 5 min

When you speak, your clock runs down

When silent, your clock remains constant

When your time reaches zero, your

microphone cuts off

Speaking Listening

decrement time
do nothing

Microphone

Time

0

5 min

Code: Debate Moderator

Each candidate is given 5 minutes

300 seconds

Every 100ms

Check each microphone

If speaking, decrement their time

When you reach zero

Turn off the microphone

(not in code)

Debate Moderator

from machine import Pin

from time import sleep_ms

ButtonA = Pin(15, Pin.IN, Pin.PULL_UP)

ButtonB = Pin(14, Pin.IN, Pin.PULL_UP)

ATime = 300.0

BTime = 300.0

while(1):

 if(ButtonA.value() == 0):

 if(ATime > 0):

 ATime -= 0.1

 if(ButtonB.value() == 0):

 if(BTime > 0):

 BTime -= 0.1

 print(ATime, BTime)

 sleep_ms(100)

Edge Sensitive Program: Voting Machine

A second type of program counts edges

Action only takes place during the rising

edge and/or falling edge of a signal

Example: Voting Machine

Count rising edges on GP15

- Candidate A

Count rising edges on GP14

- Candidate B

A = 1 A = 2 A = 3

B = 1 B = 2

Candiate B

Candidate A

GP15

GP14

Voting Machine with One Candidate

Use two wait-loops

Wait until button is pressed

- Button goes to 0

Wait until button is released

- Button goes to 1

The rising edge has been detected

Add one vote (one count)

from machine import Pin

from time import sleep_ms

Button = Pin(15, Pin.IN, Pin.PULL_UP)

Count = 0

print('Press and release button to count')

while(1):

 while(Button.value() == 1):

 pass

 while(Button.value() == 0):

 pass

 Count += 1

 print(Count)

Voting Machine with Two Candiates

Look for a 0 to 1 transition

If the current reading is a 1, and

The previous reading was a 0

you just detected a rising edge.

Current Reading

Previous Reading

0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 0 0 0 0 0 1 1 1

rising edge rising edge

Signal

A rising edge is detected when the current signal is 1 and its previous value was 0

Code:

Vote for A if

Current value is 1 and

Previous value was 0

Vote for B if

Current value is 1 and

Previous value was 0

Voting Machine

input 14 and 15

from machine import Pin

from time import sleep_ms

PlayerA = Pin(15, Pin.IN, Pin.PULL_UP)

PlayerB = Pin(14, Pin.IN, Pin.PULL_UP)

A = 1

B = 1

Na = 0

Nb = 0

time = 0

while(1):

 zA = A

 A = PlayerA.value()

 zB = B

 B = PlayerB.value()

 if((A==1) & (zA==0)):

 Na += 1

 if((B==1) & (zB==0)):

 Nb += 1

 print('Votes for A ',Na, ' Votes for B ',Nb)

 sleep_ms(100)

Hungry-Hungry Hippo
https://youtu.be/Rf3ow_DdmtE?feature=shared

Finally, let's use the push buttons to play a game

of Hungry-Hungry Hippo

Each player starts with 10.00 seconds

Each player presses their button as fast as they

can, with each button release (rising edge) tallied

Once 10 seconds is over, the game is over.

This is similar to a voting machine, except

The time is limited to 10 seconds.

Once time is over, stop counting.

Sample every 10ms so you don't miss points

Flags

This program uses a flag

Flags indicate something happened

Such as a button press

The score is only updated on scores

rather than every 10ms

as indicated by flag==1

makes the display prettier

from machine import Pin

from time import sleep_ms

PlayerA = Pin(15, Pin.IN, Pin.PULL_UP)

PlayerB = Pin(14, Pin.IN, Pin.PULL_UP)

A = B = 1

Na = Nb = time = flag = 0

print('Press buttons to count')

while(time < 10):

 zA = A

 A = PlayerA.value()

 zB = B

 B = PlayerB.value()

 if((A==1) & (zA==0)):

 Na += 1

 flag = 1

 if((B==1) & (zB==0)):

 Nb += 1

 flag = 1

 if(flag == 1):

 print(Na, Nb)

 flag = 0

 sleep_ms(10)

 time += 0.01

print('Game Over')

if(Na > Nb):

 print('Player A Wins')

elif(Nb > Na):

 print('Player B Wins')

else:

 print('Tie')

Summary

Each I/O pin can be set up as a binary input or binary output. For binary

inputs

0V is read as logic 0,

3.3V is read as logic 1, and

5V may destroy your Pico board (don't do it)

These inputs can control a program's flow

Using the level of the signal (logic 1 or 0), or

Using the edges of the signal (rising or falling)

