
Binary Outputs
Machine & Time Library - Parallel Outputs

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #5

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

The Raspberry Pi Pico has 25 I/O pins

General Purpose Input / Output pins

Each can be binary in or out

Many have other functions as well

These are not grouped

No PORTA, PORTB, etc

Each I/O is addressable separately

Logic Levels:

0V - 0.8V: logic level 0

2.0V - 3.3V: logic level 1

5V: smoke (don't apply 5V)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15 GP16

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28

GND

GP27

GP26

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

TFT.SCK

TFT.MOSI

TFT.MISO

TFT.CS

TFT.DC

TFT.RST

TFT.RST

TFT.INT

TFT.SDA

TFT.SCL

RGB LED

Buzzer

LED1

LED2Button1

Button2

ADC0(X)

ADC1(Y)

ADC2

ADC_VREF

USB

This lectures looks at
Driving an LED

Driving a Buzzer

- Beep Five Times
- Morse Code

More Power

- BJT (speaker, solenoid)
- H-Bridge

Parallel Outputs - LED Array

Driving Multiple Outputs (PortA_Write)

Display Routine (send to terminal pin values)

Timing with Binary Outputs

- Counter
- Morse Code

Frequency Out

Making a Light Blink

A simple program which makes the LED on pin 16 blink ten times is:

GP13 = Beeper

GP16 = LED D1

GP17 = LED D2

1

2

3

4

5

6

7
8

9

from machine import Pin

from time import sleep

LED = Pin(16, Pin.OUT)

for i in range(0,10):

 LED.toggle()
 sleep(0.1)

LED.value(0)

How this program works
It's a little cryptic for now

It will make more sense shortly

1 & 2: These import routines used later
on in the program

4: Sets up GPIO pin 16 to be output

7: Toggle the LED

8: Pause 0.1 second

9: Turn off the LED when done

1

2

3

4

5
6

7

8

9

from machine import Pin

from time import sleep

LED = Pin(16, Pin.OUT)

for i in range(0,10):

 LED.toggle()

 sleep(0.1)

LED.value(0)

Beep Five Times

You can also write a program to beep five times with a simple change:

1

2

3
4

5

6

7

8

9

from machine import Pin

from time import sleep

Beeper = Pin(13, Pin.OUT)

for i in range(0,10):

 Beeper.toggle()

 sleep(0.1)

Beeper.value(0)

More details on how this work follows...

Background - Modules

Modules are standardized sets of subroutines

You wrote or other people wrote

Once you import a module, you have access to all of its subroutines

In C, you import subroutine libraries using #incude statements

// Start of a C program

#include <stdio.h>

#include <math.h>

In Python, you import subroutines usine import statements

#Start of a Python program

import machine

import time
import math

Addressing Subroutines

Slightly different from C

The name of the module is part of the subroutine name

This avoids conflicts

- If two modules have two subroutines with the same name

Example: Use

cos() from module math

sleep() from module time

import math

import time

x = 2 * math.cos(1.74 * math.pi)

time.sleep(0.1)

Shortcut for Subroutine Names

It can be clunky including the module name over and over

For commonly used routines, you can skip this

Just make sure the names don't cause conflicts

There can only be one function called cos()

from math import sin, cos, pi

from time import sleep

x = 2 * cos(1.74 * pi)

sleep(0.1)

What's In a Module?

If you want to know what modules are available to use, in the shell window
type:

>>> help('modules')

random machine math time ...

(a complete list modules is in the appendix).

If you want to see what's inside a given module, such as machine or time,
type

>>> import machine

>>> dir(machine)

['PWM', 'Pin', time_pulse_us', ...]

>>> import time
>>> dir(time)

['sleep', 'sleep_ms', 'sleep_us', ...]

To get some help on a specific function within a module, use the help
function:

>>> help(machine.PWM)

object <class 'PWM'> is of type type

 init -- <function>

 deinit -- <function>

 freq -- <function>

 duty_u16 -- <function>

 duty_ns -- <function>

A complete list of modules and functions in the appendix1.

1 note: The appendix is a place to put stuff which would kill the flow of your document. A useful tool in technical documents.

Binary Outputs (Software)

Starting out, let's turn on and off an LED.

GPIO pins are binary signals:

Logic 0 = 0V

- capable of sinking up to 12mA

Logic 1 = 3.3V

- capable of sourcing up to 12mA

Each GPIO pin can be set up for either

Output (this lecture) or

Input (next lecture).

To do this, routine Pin is used

Part of the module machine.

from machine import Pin

LED1 = Pin(16,Pin.OUT)
LED2 = Pin(17,Pin.OUT)

Turning an LED On and Off

Commands to set and clear output pins:

toggle() toggle the pin

value(1) set the pin (LED on)

value(0) clear the pin (LED off)

high() set the pin (LED on)

low() clear the pin (LED off)

value() read whether the LED is on

 or off

from machine import Pin

LED1 = Pin(16,Pin.OUT)

LED2 = Pin(17,Pin.OUT)

LED1.toggle()

LED2.value(1)

LED2.value(0)

LED2.high()

LED2.low()

print(LED2.value())

Timing (sleep)
To control the timing of a light turning on and off, routines from the
module time are used

These lock up the processor for a fixed amout of time

time.sleep(1.234)

- wait 1.234 seconds

time.sleep_ms(123)

- wait 123 milliseconds

time.sleep_us(123)

- wait 123 microseconds

from machine import Pin

from time import sleep

LED1 = Pin(16,Pin.OUT)

LED2 = Pin(17,Pin.OUT)

for i in range(0,10):

 LED1.toggle()

 sleep(1)

For example, the following program

Sets up pin 16 for output,

Turns on pin 16 for one second,

Turns off pin 16 for one second, then

Toggles pin 16 ten times every 100ms

from machine import Pin

from time import sleep

LED = Pin(16, Pin.OUT)

print('Light On')

LED.value(1)

sleep(1)

LED.value(0)

sleep(1)

for i in range(0,10):

 LED.toggle()

 sleep(0.1)

Sidelight: Using Arduino Syntax

Auduino's use the syntax

GPIO(pin, value)

pin is the pin number

value is 1 or 0 for on/off.

You can mimic this function

Create your own routine

from machine import Pin

from time import sleep_ms

LED = [16,17,18,19,20,21,22,26]

for i in range(0, len(LED)):

 LED[i] = Pin(LED[i],Pin.OUT)

def GPIO(X, Value):

 if((Value > 1) | (Value < 0)):

 LED[X].toggle()

 else:

 LED[X].value(Value)

turn on output #0 (GP16)
GPIO(0,1)

turn off output #2 (GP18)

GPIO(2,0)

toggle output #4 (GP20)
GPIO(4,-1)

Binary Outputs (Hardware)

A Pi-Pico can drive more than just the LEDs on your development board.

If you want to drive external devices, some simple electronic circuits work

Loads: < 3.3V and < 12mA:

The I/O pins can source/sink up to 12mA

If that's all your load needs, drive it directly

Use a resistor to limit the current

Pi-Pico Load

R

Limit Current

to < 12mA

Example: Drive an external red LED at 10mA

First, find the data sheets for the LED

Digikey color wavelength Vf @ 20mA mcd @ 20mA price

732-5013-ND red 628nm 2.0V 2600mcd $0.18

Vf tells you the voltage drop across the LED when turned on.

To limit the current to 10mA, add a resistor:

R =

3.3V−2.0V

10mA

 = 130Ω

The brightness of the LED will then be proportional to the current:

10mA

20mA

 2600mcd = 1300mcd

2.0V3.3V

R = 130

10mA

GPx

RPi-Pico

Red

LED

If driving a load that needs less than 3.3V and less than 12mA,
you can connect it directly to the RPi-Pico with just a resistor (to limit the current)

Loads: >3.3V or >12mA:
Too much for a Pi-Pico

Add a buffer (NPN transistor)

Example: Drive a 3W white LED at 750mA

Step 1: Find the data sheets:

ebay color Vf Output price

Lighthouse LEDs warm white 3.6V @ 750mA 200lm @ 750mA $2.06

3.6V is too much for a PiPico

750mA is too much for a PiPico

Step 2: Pick your favorite NPN transistor

2SC6411 NPN transistor

hfe > (750mA / 12mA) = 62.5

Ic(max) > 750mA

Other NPN transistors will also work

Digikey Vce (sat) hfe (min) Ic (max) hfe

2SC6144SG 360mV 200 10A $0.85

Step 3: Determine Rb and Rc: Assuming a 5V source, the calculations are:

Rc =

5V−3.6V−0.36V

750mA

 = 1.38Ω

Ib >
Ic

hfe
=

750mA

200
= 3.75mA

Let Ib = 10mA

Rb =

3.3V−0.7V

10mA

 = 260Ω

3.3V
GPx

RPi-Pico

+5V

Rc

1.38 Ohms

Vf = 3.6V

2SC6144
NPN

Ic = 750mA

Ib = 10mA

Rb = 260

e

b

c

0.7V

0.36V

3.94V

LED

If your load needs more than 3.3V or more than 12mA, you can use a BJT transistor as a switch

Note that using a BJT transistor as a switch works for just about any load

Any load with Ic < 2A

 max(Ic) = h fe ⋅ Ib

 = 200 ⋅ 10mA = 2A

This makes a BJT switch very versatile and very common.

With it, you can turn on and off

LED lights

DC motors

Heaters

Speakers,

etc

providing they need less than 2A when on.

Note on Inductive Loads:

If your load is inductive in nature:

Solenoids

DC motors

you need to include a flyback diode.

This limits the voltage at Vc to +12.7V

For inductors, V = L
di

dt

When the transistor turns off, I suddenly goes to zero

This causes the voltage to go to infinity, burning out your transistor.

What's happening is

Energy is stored in the inductor as E =
1

2
Li2

When the transistor turns off, the stored energy must go somewhere.

3.3V
GPx

RPi-Pico

+12V

2SC6144

NPN

Ib = 10mA

Rb = 260

e

b

c

0.7V

M
flyback

diode

diode turns on if

Vc > 12.7V

To bleed off the stored energy, the inductor will raise its voltage until it
finds a path to ground. With the flyback diode, this voltage is limited to
12.7V

3.3V
GPx

RPi-Pico

+12V

2SC6144
NPN

Ib = 10mA

Rb = 260

e

b

c

0.7V

M
flyback
diode

diode turns on if

Vc > 12.7V

If you are turning on and off an inductive load (DC motor, solenoid),
add a flyback diode to limit the voltage at Vc

Forward & Reverse: H-Bridge

If you want to

Apply a positive and negative voltage to a load

While using just a single power supply,

an H-bridge can be used.

+12V +12V

Vc

Vd

Va

Vb

Rb

Rb

Rb

Rb

Load
V4 V5

I(load)

T1
PNP

T2
NPN

T3
PNP

T4
NPN

H-Bridge Operating Modes:

+11.6V:

T1 and T4 are on

-11.6V:

T2 and T3 are on

Coast:

All transistors off

Brake:

T2 and T4 on

Smoke:

All transisotors on

Short power to ground (bad)

note: Each transistor has a slight voltage drop (Vce) when saturated - resulting in the load sseeing slightly
less than +/- 12V when turned on

+12V +12V

Vc

Vd

Va

Vb

Rb

Rb

Rb

Rb

Load
V4 V5

I(load)

T1
PNP

T2
NPN

T3
PNP

T4
NPN

L298N H-Bridge

An inexpensive H-bridge is the L298N

5V to 35V operation

Up to 3A

This actually has two H-bridges in each package

L298N Dual H-Bridge from ebay (search: Arduino H Bridge)

L298N & Pi-Pico Connections

+5V: powers the electronics on the H-bridge

0V: common ground

+5V..+35V: The power to the load

A/B: Connections to load #1

C/D: Connections to load #2

In 1/2: Pi-Pico output for Load #1

3.3V is OK here

In 3/4: Pi-Pico output for Load #2

3.3V is OK here as well +5V0VVcc = 5..35V

A

B

C

D

H-Bridge
#1

H-Bridge
#2

IN1/2 IN3/4

L29N & Software

In terms of software, you can control the voltage to the load using two GP
output pins:

IN-1 IN-2 Vab IN-3 IN-4 Vcd

0V 0V 0 V 0V 0V 0 V

0V 3.3V + Vcc 0V 3.3V + Vcc

3.3V 0V - Vcc 3.3V 0V - Vcc

3.3V 3.3V 0 V 3.3V 3.3V 0 V

Sidelight:

The 298N is really designed to operate off of 5V

Logic 1 is anything above 1.6V, however

3.3V from a Pi-Pico works as logic 1 for the inputs IN-x

Loads with a L298N H-Bridge

Once you have an H-bridge connected to your Pi-Pico, you can drive about
any load that needs < 3A

Speakers

DC Motors

Solenoids

LEDs

etc

The limitation is the output is binary:

100% forward

100% reverse

Off

Outputs between 0% and 100% are also possible with software

Coming later...

Binary Outputs: Ports

Many microcontrollers have ports

Writing to a port writes to 8+ pins

Sometimes, this is useful:

Can you group IO pins together to

create a port?

Can I set up the Pi-Pico so that

when I write to PortA, I'm writing to

eight LEDs at once?

The answer, of course is yes:

You can do almost anything in software.

 Write a subroutine to mimic a port

Pico LED Array Resistor Array
330 Ohm

GP16

GP17

GP18

GP19

GP20

GP21

GP22

GP27

PortA

Pi-Pico GPIO Pins

All GPIO pins are stand-alone pins

good: any pin assignment works

bad: you can't write to 8 bits at a time

With software, you can mimic a port

In the following example

Pins 16..26 are assigned to PORTA

Writing to PORTA writes to all 8 bits

Good & Bad Features:

good: you now have an 8-bit port

bad: each bit has a slight time delay

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15 GP16/A0

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28

GND

GP27

GP26/A7

RUN

GP22/A6

GND

GP21/A5

GP20/A4

GP19/A3

GP18/A2

GND

GP17/A1

USB

PORTA

Python Code

Assign pins to PORTA

Display each bit of PORTA

Writing to PORTA

set/clear each bit

one at a time

from machine import Pin

from time import sleep_ms

PORTA = [16,17,18,19,20,21,22,26]

for i in range(0, len(PORTA)):

 PORTA[i] = Pin(PORTA[i],Pin.OUT)

def display():

 X = ''

 n = len(PORTA)

 for i in range(0, n):

 X += str(PORTA[n-i-1].value)

 print(X)

def BinaryOut(X):

 for i in range(0, len(PORTA)):

 if(X & (1 << i)):

 PORTA[i].value(1)

 else:

 PORTA[i].value(0)

for i in range(0, 65535):

 BinaryOut(i)

 display()

 sleep_ms(50)

BinaryOut(0)

Fun With Binary Outputs: Blinking Light

With binary outputs, you can make a light blink

Input a number from the keyboard

Blink the light N times

Only engineers get excited about a light blinking

from machine import Pin

from time import sleep_ms

LED = Pin(16,Pin.OUT)

while(1):

 N = int(input('Number of Blinks: '))

 for i in range(0,2*N)

 LED.toggle()

 sleep_ms(100)

shell

Number of Blinks: 5

Fun with Binary Outputs: Night Rider

Create a 16-bit port

GP0 to GP15

Turn on one LED

Start with GP0

Shift the lit LED every 100ms

light goes down

When you reach GP15, shift up

LED bounces up and down

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15 GP16

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28

GND

GP27

GP26

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

USB

lit LED

Python Code:

Create a 16-bit port

Make all pins output

Write to each bit

one at a time

start with PORTA = 1

shift left 16 times

then shift right 16 times

then repeat

from machine import Pin

from time import sleep_ms

PortA = [15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0]

def Init():

 for i in range(0, len(PortA)):

 PortA[i] = Pin(PortA[i], Pin.OUT)

def PortA_Write(X):

 for i in range(0, len(PortA)):

 if(X & (1<<i)):

 PortA[i].value(1)

 else:

 PortA[i].value(0)

dir = x = 1

Init()

while(1):

 PortA_Write(x)

 if(x & 0x8000):

 dir = -1

 if(x & 1):

 dir = 1

 if(dir == 1):

 x = x << 1

 else:

 x = x >> 1

 sleep_ms(100)

Night Rider Result:

Freenove board shown to right

$12 from Amazon

LEDs attached to each I/O pin

Adafruit also has breakout boards

Maker Pi Pico Base ($9.95)

Also includes buzzer, buttons, audio

Doesn't include a graphics card

Fun with Binary Outputs: Morse Code

Play NDSU in Morse Code

Use the beeper (GP13)

Dit = 100ms on / 100ms off

Dah = 300ms on / 100ms off

Program using bottom-up programming

Define Dit & Dah

Then define each letter

Then combine to play NDSU

Code

Level 0:

 Dit & Dah

Level 1:

 N, D, S, U

Level 2:

 play message

from machine import Pin

from time import sleep_ms

Beeper = Pin(13, Pin.OUT)

def Dit():

 Beeper.value(1)

 sleep_ms(100)

 Beeper.value(0)

 sleep_ms(100)

def Dah():

 Beeper.value(1)

 sleep_ms(300)

 Beeper.value(0)

 sleep_ms(100)

def Pause():

 sleep_ms(300)

def _N():

 Dah()

 Dit()

 Pause()

def _D():

 Dah()

 Dit()

 Dit()

 Pause()

def _S():

 Dit()

 Dit()

 Dit()

 Pause()

def _U():

 Dit()

 Dit()

 Dah()

 Pause()

while(1):

 _N()

 _D()

 _S()

 _U()

 sleep_ms(1000)

Summary:

With the Pi-Pico, you can turn on and off devices using the general purpose
pins.

If the load needs less than 3.3V and less than 12mA, the Pi-Pico can
drive that device directly, using only a resistor to limit the current,

If the load needs more voltage or current, the Pi-Pico can drive the
device using a BJT transistor as a switch or an H-bridge as a buffer.

With software, you can also cluster GPIO pins together to create ports.
These allow you to drive multiple devices with a single Pi-Pico board.

Appendix:
PWM Outputs

The following program sets up pin 16 for

PWM output, 1000 Hz, Duty Cycle varies from 0 to 100%

note:

duty_u16(x) sets the duty cycle (x = 0x0000) to 100% (x = 0xFFFF)

duty_ns(x) sets the on-time as x nanosecondns02

from machine import Pin

from time import sleep

red = Pin(16, Pin.OUT)

red16 = PWM(Pin(16))

red16.freq(1000)
x = 0

while(1):

 red16.duty_u16(x)

 x = (x+1) & 0xFFFF

 sleep_us(10)

Pulse With (ns)
Set the frequency to 50Hz (period = 20ms)

Set the pulse width from 0.5ms (500,000ns) to 3.0ms (3,000,000ns)

Typical for servo-motor controls

from machine import Pin

from time import sleep

red = Pin(16, Pin.OUT)

red16 = PWM(Pin(16))
red16.freq(50)

x = 500_000

dx = 1000

while(1):

 red16.duty_ns(x)

 x += dx

 if(x > 3_000_000):

 dx = -dx

 if(x < 500_000):

 dx = abs(dx)

 sleep_us(10)

Standard Modules Available

>>> help('modules')

__main__ array framebuf random

_asyncio asyncio/__init__ gc re

_boot asyncio/core hashlib

requests/__init__

_boot_fat asyncio/event heapq rp2

_onewire asyncio/funcs io select

_rp2 asyncio/lock json socket

_thread asyncio/stream lwip ssl

_webrepl binascii machine struct

aioble/__init__ bluetooth math sys

aioble/central builtins micropython time

aioble/client cmath mip/__init__ uasyncio

aioble/core collections neopixel uctypes

aioble/device cryptolib network urequests

aioble/l2cap deflate ntptime webrepl

aioble/peripheral dht onewire webrepl_setup

aioble/security ds18x20 os websocket

aioble/server errno platform

Plus any modules on the filesystem

Functions within machine

>>> import machine

>>> dir(machine)

['__class__', '__name__', 'ADC', 'I2C', 'I2S', 'PWM', 'PWRON_RESET',

'Pin', 'RTC', 'SPI', 'Signal', 'SoftI2C', 'SoftSPI', 'Timer', 'UART',

'WDT', 'WDT_RESET', '__dict__', 'bitstream', 'bootloader',

'deepsleep', 'dht_readinto', 'disable_irq', 'enable_irq', 'freq',

'idle', 'lightsleep', 'mem16', 'mem32', 'mem8', 'reset',

'reset_cause', 'soft_reset', 'time_pulse_us', 'unique_id']

Functions within time

>>> import time

>>> dir(time)
['__class__', '__name__', '__dict__', 'gmtime', 'localtime',

'mktime', 'sleep', 'sleep_ms', 'sleep_us', 'ticks_add', 'ticks_cpu',

'ticks_diff', 'ticks_ms', 'ticks_us', 'time', 'time_ns']

