
Loops and if-Statements

ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #3

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

for-loops, while-loops, and if-statements are

really useful

This lecture covers how to use these with Python

Note: Python does not use end-statements

Indentation indicated which lines are within a loop

In Python, carriage returns and intendations have

meaning

unlike C where they are decorative

for i in range(0,6):

 d1 = i

 for j in range(0,6):

 d2 = j

 y = d1 + d2

t = 0

dt = 0.01

while(t < 5):

 y = sin(t)

 t += dt

if(x < 3):

 y = 2*x + 4

elif(x < 5):

 y = 3 - 2*x

else:

 y = 0

For-Loops

Similar to Matlab:

A variable is required for the loop

The variable increments as you go through

the loop

The looping continues as long as you are

less than the end

- different than Matlab & C

- Matlab and C use less than or equal to

Open Save Run Stop

print('y = x^2')

for x in range(1,7):

 y = x*x

 print(x, y)

Thony Shell

y = x^2

 1 1

 2 4

 3 9

 4 16

 5 25

 6 36

For-Loops Syntax

A colon is required

This marks the start of the loop

Indentation is required

This indicated instructions within the loop

Four spaces are standard

There are no end statements

Removing indentation indicated the end of

the loop

Open Save Run Stop

print('y = x^2')

for x in range(1,7):

 y = x*x

 print(x, y)

print('y = 3*x')

for x in [2,4,6,8]:

 y = 3*x

 print(x,y)

Thony Shell

y = x^2

 1 1

 2 4

 3 9

 4 16

 5 25

 6 36

y = 3*x

 2 6

 4 12

 6 18

 8 24

Nested Loops in Python

Nested loops are allowed

Indentation is important

To be part of a loop, the indentation must be

maintained

Remove the indentation to end the loop

For nested loops:

Add another level of indentation

Open Save Run Stop

not a nested loop

for i in range(1,7):

 d1 = i

for j in range(1,5):

 d2 = j

nested loops

for d1 in range(1,4):

 pass

 for d2 in range(1,4):

 Roll = d1 + d2

 print(d1, d2, Roll)

Thony Shell

 1 1 2

 1 2 3

 1 3 4

 2 1 3

 2 2 4

 2 3 5

 3 1 4

 3 2 5

 3 3 6

pass statement
Open Save Run Stop

Each loop must contain 1+ statements

You can use a pass statement

Behaves like a nop command

Example:

Count to 1,000,000

Wastes time

(there are better ways to do this)

Burn 1,000,000 counts

print('Starting Count')

for i in range(0,100):

 for j in range(0,100):

 for k in range(0,100):

 pass

print('Counting Finished')

range() statement
Open Save Run Stop

Commonly used in for loops

for i in range(0,5):

i starts at 0

- same as Matlab

Increments by one each loop

- same as Matlab

Loops while i < 5

- slightly different than Matlab

- Matlab and C loop while i <= 5

To make similar to Matlab, make the 2nd

number 5.01

for i in range(0,5):

 x = i*i

 print(i, 'squared = ',x)

for i in range(0,5.01):

 y = i ** 3

 print(i, 'cubed = ',y)

Thonny Shell (Micropython)

>>>

0 squared = 0

1 squared = 1

2 squared = 4

3 squared = 9

4 squared = 16

0 cubed = 0

1 cubed = 1

2 cubed = 8

3 cubed = 27

4 cubed = 64

5 cubed = 125

Range statement (cont'd)
Open Save Run Stop

Add a 3rd number to set the step size

Go from 0

to 10.1

step size 2

for i in range(0,10.1,2):

 x = i*i

 print(i, 'squared = 'x)

Thonny Shell (Micropython)

>>>

0 squared = 0

2 squared = 4

4 squared = 16

6 squared = 36

8 squared = 64

10 squared = 100

Stepping Through an Array

Open Save Run Stop

You can also step through an array.

Example: Squares of prime numbers

prime = [1,2,3,5,7,11]

for i in prime:

 x = i*i

 print(i, 'squared = 'x)

Thonny Shell (Micropython)

>>>

1 squared = 1

2 squared = 4

3 squared = 9

5 squared = 25

7 squared = 49

11 squared = 121

For-Loop Example: Timer2 Interrupts
Open Save Run Stop

Recall from ECE 376.....

Using Timer2 interrupts:

Find A*B*C to produce 327.63Hz

A = 1..16

B = 1..256

C = 1, 4, or 16

What combination is best?

Solution:

Go through every combination

Keep the solution which is closest

Hz = 327.63

N0 = 10_000_000 / (2*Hz)

print('Target N = ',N0)

A, B, C = 0, 0, 0

MinError = 9999

for a in range(1,17):

 for b in range(1,257):

 for c in [1, 4, 16]:

 N = a*b*c

 Error = abs(N - N0)

 if(Error < MinError):

 A = a

 B = b

 C = c

 MinError = Error

print('A = ',A)

print('B = ',B)

print('C = ',C)

print('N = ',A*B*C)

Thonny Shell (Micropython)

Target N = 15261.12

A = 6

B = 159

C = 16

N = 15264

For-Loop Example: Creating Arrays

As an example of using for-loops, create an array which indicated the

probability of getting the numbers 0..10 when rolling

A 4-sided die, and a 6-sided die

The array should like the following:

k (die roll) 0 1 2 3 4 5 6 7 8 9 10

d4 0 1/4 1/4 1/4 1/4 0 0 0 0 0 0

d6 0 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

pdf(4-sided die)

pdf(6-sided die)

pdf for a 4-sided and 6-sided die

In Micropython, there are a couple of ways of doing this:

Option #: No Finesse

d4 = [0,1/4,1/4,1/4,1/4,0,0,0,0,0,0]

d6 = [0,1/6,1/6,1/6/1/6,1/6,1/6,0,0,0,0]

Option 2: Use a for-loop

Open Save Run Stop

d4 = [0]*10

for k in range(1,4.1):

 d4[k] = 1/4

d6 = [0]*10

for k in range(1,6.1):

 d6[k] = 1/6

Option #3: Use a subroutine

something we'll cover shortly

You can also format the output:

Open Save Run Stop

d4 = [0]*9

for i in range(1,4.01):

 d4[i] = 1/4

d6 = [0]*9

for k in range(1,6.01):

 d6[k] = 1/6

print(' k d4 d6')

for k in range(0,9):

 print('{: 3.0f}'.format(k), '{: 6.3f}'.format(d4[k]), '{: 6.3f}'.format(d6[k]))

Shell

>>>

 k d4 d6

 0 0.000 0.000

 1 0.250 0.167

 2 0.250 0.167

 3 0.250 0.167

 4 0.250 0.167

 5 0.000 0.167

 6 0.000 0.167

 7 0.000 0.000

 8 0.000 0.000

While-Loops

A while loop keeps going

As long as a condition holds, or

Until you encounter a break statement

For example, the probability of flipping a coin k times before you get a

heads (exponential distribution) is:

p(k) =

1

2

1

2

k−1

u(k − 1)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

p(heads in k coin tosses)

This series goes out to infinity

Truncate the series using a for-loop

Open Save Run Stop

k = [0]

p = [0]

for i in range(1,11):

 k.append(i)

 p.append(0.5 * (0.5 ** (i-1))

print(' k p(k)')

for i in range(0,11):

 print('{: 3.0f}'.format(k[i]), '{: 6.3f}'.format(p[i]))

Shell

>>>

 k p(k)

 0 0.000

 1 0.500

 2 0.250

 3 0.125

 4 0.063

 5 0.031

 6 0.016

 7 0.008

 8 0.004

 9 0.002

10 0.001

If you use a while loop, you can stop as soon as p(k) < 0.01

Open Save Run Stop

p = [0]

x = 0.5

k = 0

while (x > 0.01):

 k += 1

 x = 0.5 * (0.5 ** (k-1))

 p.append(x)

for k in range(0,len(p)):

 print('{: 3.0f}'.format(k), '{: 6.3f}'.format(p[k]))

Shell

>>>

 k p(k)

 0 0.000

 1 0.500

 2 0.250

 3 0.125

 4 0.063

 5 0.031

 6 0.016

 7 0.008

Another common use of while statements is to set up an infinite loop

Open Save Run Stop

while(1):

 X = float(input('X = '))

 Y = X*X

 print('The square of ',X,'is ',Y)

Thonny Shell (Micropython)

X = 3

The square of 3 is 9

X = 4.2

The square of 4.2 is 17.64

Press the Stop symbol to break out of an infinite loop

If Statements

With if-statements

If the condition is true, the indented section is executed one time,

Otherwise it is skipped.

Conditional statements are:
X > Y X is greater than Y

X < Y X is less than Y

X >= Y X is greater than or equal to Y

X == Y X is equal to Y

X != Y X is not equal to Y

& logical and

| logical or

^ logical xor

Indentation indicates the statements that are within the for loop.

if(x>y):

 print('x is greater than y')

if(x<y):

 print('x is less than y')

if(x==y):

 print('x is equal to y')

else, elif statements:

else indicates instructions to execute if the if-statement is false

if(x>y):

 print('x is greater than y')

else:

 print('x is less than or equal to y')

elif is an else-if statement

if(x>y):

 print('x is greater than y')

elif(x<y):

 print('x is less than y')

else:

 print('x is equal to y')

One place where else-if is useful is when you have different bands. For

example, the following code is equivalent:

Option 1

if(T>40):

 print('Really hot: T > 40')

if((T>30)&(T<=40)):

 print('Hot: 30<T<40)')

if((T>20)&(T<=30)):

 print('Comfortable: 20<T<30')

if((T>10)&(T<=20)):

 print('Cool: 10<T<20')

or using else-statements

Option 2

if(T>40):

 print('Really hot: T > 40')

elif(T>30):

 print('Hot: 30<T<40)')

elif(T>20):

 print('Comfortable: 20<T<30')

elif(T>10):

 print('Cool: 10<T<20')

else:

 print('Chilly: T < 10')

If-Statements and Probability Density Functions
Open Save Run Stop

A more efficient way to create the pdf for

a 4-sided and 6-side die:

Use if-statments

Along with append() statements

d4 = []

d6 = []

for k in range(0,8.1):

 if((k>=1) & (k<=4)):

 d4.append(1/4)

 else:

 d4.append(0)

 if((k>=1) & (k<=6)):

 d6.append(1/6)

 else:

 d6.append(0)

print(' k d4 d6')

for k in range(0,8.1):

 print(k, d4[k], d6[k])

Shell

 k d4 d6

 0 0.000 0.000

 1 0.250 0.167

 2 0.250 0.167

 3 0.250 0.167

 4 0.250 0.167

 5 0.000 0.167

 6 0.000 0.167

 7 0.000 0.000

 8 0.000 0.000

If-Statements & Convolution
Open Save Run Stop

Y = d4 + d6

When you add dice,

You convolve the pdf's

y[k] = sum(d4[n] * d6[k-n])

Convolution can be done with

for-loops

d4 = [0]*12

d6 = [0]*12

y = [0]*12

for k in range(1,4.1):

 d4[k] = 1/4

for k in range(1,6.1):

 d6[k] = 1/6

for k in range(0,12):

 y[k] = 0

 for n in range(0,12):

 if((k-n>0) & (k-n)<12)):

 y[k] += d4[n]*d6[k-n]

print('p(d4 + d6) = 3) = ', y[3])

p(d4 + d6) = 3 = 0.083

The probability of the sum of a d4 and d6 is 3 is 0.083

0 1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

p(d4+d6) = k

Summary

MicroPython is similar to Matlab

MicroPython has for-loops

It has while-loops

It has if-statements

The syntax is slightly different

MicroPython does not have end statements

Instead, it uses indentation

Indentation is important

It indicates which statements are part of a loop

It tells you where the loop ends

