
Thonny Shell & Program Window
ECE 476 Advanced Embedded Systems

Jake Glower - Lecture #2

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Introduction:

The Raspberry Pi-Pico is a

microcontroller version of the

Raspberry Pi

It can be programmed in

Assembler

C

Python

Other...

In ECE 476, we'll be using

MicroPython

A subset of Python

Designed for microcontrollers

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15 GP16

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28

GND

GP27

GP26

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

TFT.SCK

TFT.MOSI

TFT.MISO

TFT.CS

TFT.DC

TFT.RST

TFT.RST

TFT.INT

TFT.SDA

TFT.SCL

RGB LED

Buzzer

LED1

LED2Button1

Button2

ADC0(X)

ADC1(Y)

ADC2

ADC_VREF

USB

Thonny, MicroPython, & Matlab

MicroPython is similar to Matlab

Can be used as a calculator

Works with complex numbers

Has similar syntax

Has windows (program, command)

Is a programming language

This lecture goes over using MicroPython

in this fashion

Installing Thonny
Locate Thonny 4.1.4

Download to PC

Connect to Pico board

Install Micropython

Click on the lower-right corner

Select your Pi-Pico chip

It will prompt you to install MicroPython

if this is the first time using your chip

Thonny: Command Window

Once Thonny is installed and you're

connected to your Pico chip, you're ready

to start running Python code. Thonny

looks very much like Matlab:

There is a script window (top window)

where you can write and run programs.

There is command window (shell) where

you can type in code directly and see the

result

Python is an interpretive language.

Similar to Matlab

Each line of code is executed as you type

Allows you to see each result

Python is slower than C code.

C is 3-10x slower than assembler

Python is 3-10x slower than C

In return, you get a language which is

Easier to use,

Easier to modify, and

Easier to build upon.

What language is best?

It depends.

If you really need speed and size, use assembler.

If speed, number crunching, and reusable code is needed, use C

If incorporating features such as graphics displays, touch-screens, web

interfaces, etc. are needed, use Python.

In short, programming languages are tools.

If the tool helps you do your job, use it.

If the tool makes your life hard, don't use it.

Thonny & Shell Window
Command Window in Matlab-Speak

You can type commands in the shell.

Python act like a calculator, very much like Matlab

At the command line you can do calculations such as

>>> 3 + 5

8

>>>(2 + 3)*(7 + 8)

75

>>>1/(1/50 + 1/60 + 1/70)

19.6262

Variable Names in Python

Variables are valid in Python

To be valid

The first character must be a letter or an underscore (_)

The following characters can only be letters, underscores, or digits

>>> Pi.Value = 3.14159

>>> Pi Value = 3.14159

>>> Pi_Value = 3.14159

invalid decimal points are not allowed

invalid spaces are not allowed

valid variable name

Case Sensitivity

MicroPython is case sensitive.

The following code creates two different variables
>>> Name = 'Jake'

>>> name = 'Bill'

You cannot use the following words as variable names
 and, as, assert, break, class, continue, def

 del, elif, else, except, finally, for, from, global

 if, import, in, is, lambda, nonlocal, not, or, pass,

 raise, return, try, while, with, yield, False, None, True

MicroPython Syntax

Assigning values to variables:
X = 123 decimal 123

X = 0x123 hex 123

x, y, z = 1, 2, 3

X = [1,2,3,4,5] matrix or array

X = range(1,6) same matrix

X = [[1,2],[3,4]] 2x2 matrix

Operations
+ add

- subtract

* multiply

/ divide (result is usually a float)
// divide and round down (result is integer)

% modulus (remainder)

** raise to the power

X.append(6) append 6 to the end of array X

Logic Operations
& logical AND (bitwise)

| logical OR (bitwise)

^ logical XOR (bitwise)

>> shift right

<< shift left

comment statement
this is a comment statement

Conditionals:

X > Y

X < Y
X >= Y

X == Y

X != Y

Converting variable types:
int(X) convert to an integer, round down

round(X) round to nearest integer
float(X) convert to a floating point number

Declaring Variables:

Python allows you to create new variables on the fly

You don't have to declare all of your variables at the start of a program

Python automatically adjusts variable types

>>> X = 3 X is automatically treated like an integer

>>> Y = 4 Y is automatically treated like an integer

>>> Z = X/Y Z becomes a float (0.75)

>>> Z = X//Y Z is an integer (0)

print() Information can be sent to the

shell window using a print() statement

>>> print('Hello World')

Hello World

>>> X = 2**0.5

>>> print('X = ',X)

X = 1.414214

X = input()

Prompts user for an input

Pythons interprits this as a string

Convert to an integer or float

X = int(input('Type in a number'))

X = float(input('Type in a number'))

Formatting Output

Makes output prettier

X hexadecimal

d decimal

2f two fixed decimal places

2e two decimal in scientific notation

Command Window & Scripts Examples

Like Matlab, MicoPython can be used like a calculator.

Example 1: Find the resistance Rab:

Resistors add in series as Rs = R1 + R2

Resistors in parallel as Rp = 


1

R1
+

1

R2




−1

a b
50

250

75

450

300 200

Example, the 200 Ohm and 300 Ohm are in series

Rnet = 200 + 300 = 500Ω

This is in parallel with 450 Ohms

450 500 = 


1

450
+

1

500



−1

= 236.84Ω

a b
50

250

75

450

300 200

In the shell window, you can solve for Rab:
Open Save Run Stop

program window

Shell Window

>>> R1 = 200 + 300

>>> R2 = 1 / (1/R1 + 1/450)

>>> R3 = R2 + 75

>>> R4 = 1 / (1/R3 + 1/250)

>>> Rab = 50 + R4

>>> Rab

188.7588

a b
50

250

75

450

300 200

Python Programs:
Place the code in the program window (top)

Allows you to run the program over and over

Open Save Run Stop

R = float(input('Value of R = '))
R1 = 200 + R

R2 = 1 / (1/R1 + 1/450)

R3 = R2 + 75

R4 = 1 / (1/R3 + 1/250)

R5 = 50 + R4

print('Rab = ',R5)

Shell Window

>>>

Hit the run icon to execute the program

Prompts you for an input in the shell window

The program computes and displays Rab

Presssing run repeats the process

Open Save Run Stop

R = float(input('Value of R = '))

R1 = 200 + R

R2 = 1 / (1/R1 + 1/450)

R3 = R2 + 75

R4 = 1 / (1/R3 + 1/250)

R5 = 50 + R4

print('Rab = ',R5)

Shell Window

>>>

Value of R = 300

Rab = 188.7588

Value of R = 123.45

Rab = 178.2118

Example 2: As a second example, compute the voltages {V1, V2, V3}

using voltage division:

From Circuits I

V3 = 


400

400+125

V2

V2 = 


R20

R20+75

V1

V1 = 


R10

R10+50

V0

R20 is the resistance at node 2 to ground looking right

R20 = 300 (400 + 125)

R10 is the resistance at node 1 to ground looking right

R10 = 200 (75 + R20)

50 75 125

200 300 40010V

V0 V1 V2 V3

From the Shell (lower window):
Open Save Run Stop

Shell Window

>>> # Finding voltages using votlage division

>>> R20 = 1 / (1/300 + 1/525)

>>> R10 = 1 / (1/200 + 1/(75+R23))

>>> V1 = R10 / (R10 + 50)*10

>>> V2 = R20 / (R20 + 75) * V1

>>> V3 = 400 / (400 + 125) * V2
>>> print(V1,V2,V3)

6.953938 4.992571 3.803864

50 75 125

200 300 40010V

V0 V1 V2 V3

Place the instructions in the program window

Lets you run over and over again

Open Save Run Stop

R30 = int(input('Value of R30 = '))

R20 = 1 / (1/300 + 1/(125 + R30))

R10 = 1 / (1/200 + 1/(75+R20))

V1 = R10 / (R10 + 50)*10

V2 = R20 / (R20 + 75) * V1
V3 = 400 / (400 + 125) * V2

print('V1 = ', V1)

print(' V2 = ', V2)

print(' V3 = ', V3)

Shell Window

>>>

Value of R30 = 400

V1 = 6.9539

V2 = 4.9926

V3 = 3.8039

Value of R30 = 123.45

V1 = 6.7246

V2 = 4.3332

V3 = 3.3015

Example 3: Complex Numbers Impedance.

Thonny can also handle complex numbers similar to Matlab.

For example, find the impedance Zab:

a

b

20 j30 40

50 j60
-j70

In the Shell window:

Open Save Run Stop

Shell Window

>>> j = (-1) ** 0.5

>>> Z3 = - j*70

>>> Z2 = 1 / (1/(j*60) + 1/(40 + Z3))

>>> Z1 = 1 / (1/50 + 1 / (j*30 + Z2))

>>> Z0 = 20 + Z1
>>> print('Zab = ',Z0)

Zab = (58.96067+9.111071j)

a

b

20 j30 40

50 j60
-j70

In the Program Window:

Open Save Run Stop

j = (-1) ** 0.5

X = float(input('Impedance of C3: -j'))

Z3 = -j*X

Z2 = 1 / (1/(j*60) + 1/(40 + Z3))
Z1 = 1 / (1/50 + 1 / (j*30 + Z2))

Z0 = 20 + Z1

print('Zab = ',Z0)

Shell Window

>>>

Impedance of C3: -j70

Zab = (58.96067+9.111071j)

Impedance of C3: -j45.678

Zab = (54.26275+7.450337j)

Example 4: Finally, this also works with voltage division.

Find {V1, V2, and V3} using MicroPython:

20 40

50

0.1H

0.2H

0.01F

8 cos(100t)

V0 V1 V2 V3

+

-

Recall from Circuits I, the AC impedance of inductors, resistors, and

capacitors are:

R → R

L → jωL

C →
1

jωC

and voltages convert as

V = a cos (ωt) + b sin (ωt) → a − jb

20 40

50

0.1H

0.2H

0.01F

8 cos(100t)

V0 V1 V2 V3

+

-

In the Shell window:

>>> w = 100

>>> Z30 = 1 / (j*w*0.01)

>>> Z20 = j*w*0.2

>>> Z12 = j*w*0.1

>>> Z3 = Z30

>>> Z2 = 1 / (1/Z20 + 1/(40 + Z30))

>>> Z1 = 1 / (1/50 + 1/(Z12 + Z20))

>>> V0 = 8 + j*0

>>> V1 = Z1 / (20 + Z1)*V0

>>> V2 = Z2 / (Z12 + Z2)*V1

>>> V3 = Z3 / (40 + Z3)*V2

>>> print('V0 = ',V0)
V0 = (8+0j)

>>> print('V1 = ',V1)

V1 = (4.658041+2.218115j)

>>> print('V2 = ',V2)

V2 = (3.27509+0.937138j)

>>> print('V3 = ',V3)

V3 = (0.02545947-0.08124077j)

20 40

50

0.1H

0.2H

0.01F

8 cos(100t)

V0 V1 V2 V3

+

-

You can also place this in the program window and run it as a program:

Open Save Run Stop

C3 = float(input('Value of C3 (F) = '))

w = 100

Z30 = 1 / (j*w*C3)

Z20 = j*w*0.2
Z12 = j*w*0.1

Z3 = Z30

Z2 = 1 / (1/Z20 + 1/(40 + Z30))

Z1 = 1 / (1/50 + 1/(Z12 + Z20))

V0 = 8 + j*0

V1 = Z1 / (20 + Z1)*V0

V2 = Z2 / (Z12 + Z2)*V1

V3 = Z3 / (40 + Z3)*V2

print('V0 = ',V0)

print('V1 = ',V1)

print('V2 = ',V2)

print('V3 = ',V3)

Shell Window

Value of C3 (F) = 0.01

V0 = (8+0j)

V1 = (4.658041+2.218115j)

V2 = (3.27509+0.937138j)
V3 = (0.02545947-0.08124077j)

Differences Between Matlab and MicroPython

Matlab and MicroPython are different

Matlab was written for engineers and scientists

MicroPython was written for the general public

More specifically:

Matlab is a matrix language

MicroPython is not

Example:

Matlab treats variables as matrices

Python treats them as strings

Matlab Command Window Thonny Shell

>> A = [1,2;3,4]

A =

 1 2

 3 4

>> B = 2 * A
B =

 2 4

 6 8

>> C = A*A

C =

 7 10

 15 22

>>> A = 'Hello'

>>> A

'Hello'

>>> B = 2*A

'HelloHello'

>>> A = [1, 2]

>>> A

[1, 2]

>>> B = 2*A

>>> B

[1, 2, 1, 2]

>>> C = A*A

Error - unsupported file type

Summary:

Thonny is very similar to Matlab

You can use the Shell window like the command window in Matlab. It

behaves like a calculator, typing in code and seeing the result after each

instruction.

You can use the program window like the script window in Matlab. Once

code is written, you can execute the program

