
29 PIO State Machines

Introduction

A semi-unique feature of the Raspberry Pi Pico is the existence of state machines. These are independent

processors which are able to drive the I/O pins.

These are described on page 34 of the PI-Pico data sheets:

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

The PIO subsystem on RP-series microcontrollers allows you to write small, simple programs

for what are called PIO state machines, of which RP2040 has eight split across two PIO

instances,

The intent of the PIO State Machines is to make nonstandard communications more efficient - essentially

replacing bit-banging. Some forms of communications are already supported by the Pi-Pico, including

UART, SPI, and I2C. Other forms of communications exist, such as NeoPixels and CAN to name a few.

By using PI State Machines, you can create more efficient ways of using these protocols.

State Machines

The PIO State Machines are mini-microcontrollers capable of running a short program autonomously

from the rest of the Pi-Pico. Four such state machines are available, each one able to run a short program

which is limited to 32 instructions, running with a clock frequency ranging from 2kHz to 125MHz. Each

state machine is capable of reading and/or writing to any of the GPIO pins. In addition, each state

machine is capable of sending and receiving data from the Pi-Pico through a set of FIFO (first-in,

first-out) buffers.

State

Machine 0

FIFO FIFO

State

Machine 1

FIFO FIFO

State

Machine 2

FIFO FIFO

State

Machine 3

FIFO FIFOProgram

Memory

32 Inst

4 Read Ports

I/O Mapping

GPIO Output Level GPIO Output Enable GPIO Input

x32 x32 x32

Clock

2kHz

to

125MHz

Four GPIO State Machines are available on the Pi-Pico.

State Machine Instructions
https://www.seeedstudio.com/blog/2021/01/25/programmable-io-with-raspberry-pi-pico/

The PIO State Machines use a limited set of assembler instructions.

IN – Shifts 1 word of 32 bits at a time into the ISR from another location

OUT – Shifts 1 word of 32 bits from the OSR to another location

PUSH – Sends data to the RX (input) FIFO

PULL – Gets data from the TX (output) FIFO

NDSU PIO State Machines ECE 476

JSG - 1 - October 2, 2024

MOV – Moves data from one location to another

IRQ – Sets or clears interrupt flag

SET – Writes data to destination

WAIT – Pauses until a defined action happens

JMP – Jumps to a different point in the code

This doesn't seem like a lot, but it's enough to program some fairly elaborate I/O functions such as a CAN

bus. In this lecture, we'll look at using the PIO State Machines to do a few functions:

Output a 1kHz square wave (basic program)

Output a 1Hz square wave (looping)

Output a 2kHz square wave with variable duty cycle (multiple PIO functions)

Generate a pulse with N bounces on the rising edge (passing data to a PIO function), and

Driving a NeoPixel (generating nonstandard output signals)

Output a 1kHz Square Wave
https://dev.to/blues/a-practical-look-at-pio-on-the-raspberry-pi-pico-50j8

Starting out, let's make a light blink at 1kHz:

import time

import rp2

from machine import Pin

def blink():

 set(pins, 1)

 set(pins, 0)

 wrap()

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

sm = rp2.StateMachine(0, blink, freq=2000, set_base=Pin(16))

sm.active(1)

time.sleep(3)

sm.active(0)

Explaining this program:

def blink():

 set(pins, 1)

 set(pins, 0)

 wrap()

This is the assembler subroutine which runs on the state-machine. This program

Sets the I/O pin

Clears the I/O pin, then

The program repeats (wrap())

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

sm = rp2.StateMachine(0, blink, freq=2000, set_base=Pin(16))

This defines state machine #0

The routine called is blink

The state machine operates with a 2000Hz clock frequency (range is 2kHz to 125MHz (!))

NDSU PIO State Machines ECE 476

JSG - 2 - October 2, 2024

The output pin used is GP16

When initializing the state-machine, you can also specify input pins, input shift direction, output shift

direction, and other parameters. Please visit MicroPython for a more detailed explanation

https://docs.micropython.org/en/latest/library/rp2.StateMachine.html

The last set of commands:

sm.active(1)

time.sleep(3)

sm.active(0)

turns on (activates) the state-machine for three seconds. The result is a 1kHz square wave

1kHz Square Wave Generated with a State Machine

A slower square wave can be produced by adding wait states:

import time

import rp2

from machine import Pin

def blink():

 set(pins, 1) [31]

 nop() [31]

 set(pins, 0) [31]

 nop() [31]

 wrap()

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

sm = rp2.StateMachine(0, blink, freq=2000, set_base=Pin(16))

sm.active(1)

time.sleep(3)

sm.active(0)

In this program, the [31] tells the state-machine to insert 31 nop commands after each instruction

(including the nop()). The results is a 15Hz square wave

NDSU PIO State Machines ECE 476

JSG - 3 - October 2, 2024

Each loop has four instructions,

Plus 31x4 nops inserted

The period is thus

 T = 32 ⋅ 4 ⋅ 0.5ms = 64ms

Square Wave with a 64ms Period - Generated with a State Machine

Note that the maximum number of nop statements you can insert is 31

[31] is allowed

[32] is not (too large)

NDSU PIO State Machines ECE 476

JSG - 4 - October 2, 2024

Output a 1Hz Square Wave

Looping can be accomplished by adding counters and labels.

import time

import rp2

from machine import Pin

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

def blink_1Hz():

 set(pins, 1)

 set(x, 10)

 label("loop_0")

 set(y, 10)

 label("loop_1")

 nop().delay(6)

 jmp(y_dec, "loop_1")

 jmp(x_dec, "loop_0")

 set(pins, 0)

 set(x, 10)

 label("loop_2")

 set(y, 10)

 label("loop_3")

 nop().delay(6)

 jmp(y_dec, "loop_3")

 jmp(x_dec, "loop_2")

 wrap()

sm = rp2.StateMachine(0, blink_1Hz, freq=2_000, set_base=Pin(16))

sm.active(1)

time.sleep(10)

sm.active(0)

Code for generating a 1Hz square wave

These commands do the following:

set(x, 10) move the number 10 to register x.

Valid registers are: x, y, isr, osr

Uses 6-bit numbers (range = 0 to 31)

label("loop_0") Define a label for future jump commands

jmp(y_dec, "loop_1") decrement y

 if y >= 0, jump to label "loop_1"

 otherwise skip the jump and goto the next line

With this program

You set pin 16

Loop 100 times (x=10, y=10, keep looping)

Each loop takes ten clocks

- nop.delay(6) takes seven clocks

- plus three for the jump instruction and label

For a total of 1000 clocks (500ms) high, 1000 clocks (500ms) low

NDSU PIO State Machines ECE 476

JSG - 5 - October 2, 2024

By adding loops, a 1Hz square wave can be produced using State Machines

Aliasing & Two PIO State Machines

Multiple PIO State Machines can be turned on at the same time. For example, the following program

turns on two state machines:

led_off(): Called every 2000 Hz

led_on(): Called every 2001 Hz

The result is a variable duty cycle output on GP16 with a period equal to the difference in frequency

set

2000 Hz

clear

2001 Hz

A variable duty cycle can be created by using two state machines running ad different clock rates

Code:

NDSU PIO State Machines ECE 476

JSG - 6 - October 2, 2024

from rp2 import PIO, StateMachine, asm_pio

from machine import Pin

import time

@asm_pio(set_init=PIO.OUT_LOW)

def led_off():

 set(pins, 0)

@asm_pio(set_init=PIO.OUT_LOW)

def led_on():

 set(pins, 1)

sm1 = StateMachine(1, led_off, freq=2000, set_base=Pin(16))

sm2 = StateMachine(2, led_on, freq=2001, set_base=Pin(16))

sm1.active(1)

sm2.active(1)

https://www.seeedstudio.com/blog/2021/01/25/programmable-io-with-raspberry-pi-pico/

GP16 gets brighter with a 1Hz beat frequency

One-Time Programs - BlinkN
https://dev.to/blues/a-practical-look-at-pio-on-the-raspberry-pi-pico-50j8

The previous programs ran over and over when the state-machine is activated. In order to run the state

machine one time, push data onto the corresponding stack

For example, the following state-machine sends out N+1 pulses where N is the number pushed onto the

stack.

Data is pulled from the stack using a pull() command

The data is then read from the osr register

From that point onward,

pin is set for two clocks (1ms)

pin is then cleared for one clock (0.5ms)

x is decremented and

the process repeats as long as x>0

NDSU PIO State Machines ECE 476

JSG - 7 - October 2, 2024

import time

import rp2

from machine import Pin

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

def BlinkN():

 pull()

 mov(x, osr)

 jmp(not x, "loop_end")

 label("loop_2")

 set(pins, 1).delay(1)

 set(pins, 0)

 jmp(x_dec, "loop_2")

 label("loop_end")

sm = rp2.StateMachine(0, BlinkN, freq=2_000, set_base=Pin(16))

sm.active(1)

while(1):

 sm.put(3)

 time.sleep(0.1)

Blink N+1 times each time sm.put(N) is executed

 One-Shot Outputs using State-Machines: four pulses are output each time sm.put(3) is executed

One-Time Program: Bouncing
https://dev.to/blues/a-practical-look-at-pio-on-the-raspberry-pi-pico-50j8

Bouncing is a problem often encountered with mechanical switches. In order to test ways of removing

the effects of bouncing, it would help to have a reliable input which bounces a controlled number of

times. The following program generates a fixed number of bounces each time a pulse is sent out.

The following program uses two PIO programs:

sm0: Sets GP16 after N+1 bounces

NDSU PIO State Machines ECE 476

JSG - 8 - October 2, 2024

sm1: Clears GP16

Instead of each program running over and over as in the previous examples, each program is called only

once when a number is pushed onto its corresponding stack

 sm0.put(5)

 sm1.put(1)

State-machine 1 is fairly simple:

It pulls the data off the state to clear the stack, and then

Clears GP16

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

def clear_pin():

 pull()

 set(pins, 0)

State-machine code for clearing a pin

State-machine 0 is a little more complicated:

It first pulls the number pushed off the stack, storing it in the osr register

This value is then moved to register x, telling the state-machine how many times to bounce

The pins are then set and cleared (one bounce)

Counter x is then decremented, and

The bouncing continues until x is decremented past zero

Once bouncing is completed, the GPIO pin is set

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

def set_pin():

 pull()

 mov(x, osr)

 label("loop")

 set(pins, 1).delay(1)

 set(pins, 0)

 jmp(x_dec, "loop")

 set(pins, 1)

state-machine code for bouncing N+1 times then setting a pin

The overall program is as follows:

NDSU PIO State Machines ECE 476

JSG - 9 - October 2, 2024

import time

import rp2

from machine import Pin

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

def set_pin():

 pull()

 mov(x, osr)

 label("loop")

 set(pins, 1).delay(1)

 set(pins, 0)

 jmp(x_dec, "loop")

 set(pins, 1)

@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)

def clear_pin():

 pull()

 set(pins, 0)

sm0 = rp2.StateMachine(0, set_pin, freq=10_000, set_base=Pin(16))

sm1 = rp2.StateMachine(1, clear_pin, freq=10_000, set_base=Pin(16))

sm0.active(1)

sm1.active(1)

while(1):

 sm0.put(5)

 time.sleep(0.01)

 sm1.put(1)

 time.sleep(0.1)

Overall code for bouncing N+1 times when setting a pin

The net result is a pulse with is six bounces every 0.1 second. Note that state-machine(0) starts to

execute as soon as you execute the sm0.put(5) command. The 10ms delay starts counting from the time

that sm0 is called rather than from the time it finishes.

Calling two state-machines: One generates seven bounces then sets, the other clears

NDSU PIO State Machines ECE 476

JSG - 10 - October 2, 2024

NeoPixels & State Machines
https://www.instructables.com/Respberry-Pi-Pico-W-NeoPixels-Experiments-With-Pro/

Finally, let's drive a NeoPixel using a state-machine. This is really what state-machines are designed for:

driving I/O pins for devices with timing-critical nonstandard interfaces.

Recall that the timing for a NeoPixel is a bit unusual. Data is sent to NeoPixels in 24-bit chunks. 1's and

0's are sent as pulse durations:

Logic 1: 700ns pulse +/- 120ns

Logic 0: 300ns pulse +/- 120ns

Bit: 1200ns +/- 120ns

For example, the signal 0x0F would look like the following

300ns 700ns900ns 500ns

0 0 0 0 1 1 1 1

Timing for NeoPixels

This is a nonstandard format: it doesn't follow I2C, SPI, or UART protocol. With State-Machines, a

Pico can handle this with no problem.

The following program from instrutables.com drives the NeoPixel in several steps.

First, drive a single neopixel. The GRB value is pushed onto the stack as a left-justified 32-bit number:

g = 50

r = 100

b = 150

grb = (g << 16) + (r << 8) + b

sm.put(grb,8)

Once data is pushed onto the stack, the state-machine takes over and runs at 20MHz

Logic 0 = 300ns (6 clocks)

Logic 1 = 700ns (14 clocks)

Each bit = 1.2ms (24 clocks)

In the program neo_prog()

The 32-bit value of g/r/b is pulled off the stack and stored in the osr (pull())

A counter, x, is set to 23 to count 24 bits

The most-significant bit of the osr moved to y

- If it was a 1, output a 1 for 14 clocks then a 0 for 10 clocks

- If it was a 0, output a 1 for 6 clocks than a 0 for 18 clocks

Decrement counter x and repeat 24 times

NDSU PIO State Machines ECE 476

JSG - 11 - October 2, 2024

def neo_prog():

 pull() # osr <= 24 bits GRB

 set(x, 23) # x (bit counter) <= 23

 label("loop_pixel_bit")

 out(y, 1) # y <= left-most 1 bit of osr

 jmp(not_y, "bit_0")

 set(pins, 1).delay(13) # 1: high (700ns)

 set(pins, 0).delay(9) # 1: low (500ns)

 jmp("bit_end")

 label("bit_0")

 set(pins, 1).delay(5) # 0: high (300ns)

 set(pins, 0).delay(17) # 0: low (900ns)

 label("bit_end")

 jmp(x_dec, "loop_pixel_bit") # x is bit counter

State-machine code for driving a single NeoPixel
https://www.instructables.com/Respberry-Pi-Pico-W-NeoPixels-Experiments-With-Pro/

The calling routine is then:

sm = rp2.StateMachine(0, neo_prog, freq=20_000_000, set_base=Pin(12))

sm.active(1)

g = 0x55

r = 0x0F

b = 0x1F

grb = (g << 16) + (r << 8) + b

while(1):

 sm.put(grb << 8)

 time.sleep(0.1)

Calling sequence for driving a single NeoPixel

NeoPixel output and signals showing 010101... data

A more general routine which can talk to multiple NeoPixels comes from

NDSU PIO State Machines ECE 476

JSG - 12 - October 2, 2024

https://www.instructables.com/Respberry-Pi-Pico-W-NeoPixels-Experiments-With-Pro/

This routine has you

First push the number of NeoPixels on the stack, then

Push the GRB values of each NeoPixel onto the stack as a left-justified 32-bit number

For example, if talking to 16 NeoPixels. the main calling routine would be

x = 0

N = 16

while(1):

 x = (x + 1) % 256

 sm.put(N-1)

 for i in range(0,N):

 g = 0

 r = i*10

 b = 160 - r

 grb = (g << 16) + (r << 8) + b

 sm.put(grb << 8)

 time.sleep(0.05)

Calling routine for driving 16 NeoPixels

The NeoPixel driver routine saved as state-machine 0 is then

def neo_prog():

 pull() # osr <= number of pixels - 1

 mov(y, osr) # y <= number of pixels - 1

 label("loop_pixel")

 mov(isr, y) # isr (pixel counter) <= y

 pull() # osr <= 24 bits GRB

 set(x, 23) # x (bit counter) <= 23

 label("loop_pixel_bit")

 out(y, 1) # y <= left-most 1 bit of osr

 jmp(not_y, "bit_0")

 set(pins, 1).delay(13) # 1: high (7 cycles)

 set(pins, 0).delay(9) # 1: low (5 cycles)

 jmp("bit_end")

 label("bit_0")

 set(pins, 1).delay(5) # 0: high (3 cycles)

 set(pins, 0).delay(17) # 0: low (9 cycles)

 label("bit_end")

 jmp(x_dec, "loop_pixel_bit") # x is bit counter

 mov(y, isr) # y <= isr (pixel counter)

 jmp(y_dec, "loop_pixel") # y is pixel counter

State-machine code for driving N NeoPixels
https://www.instructables.com/Respberry-Pi-Pico-W-NeoPixels-Experiments-With-Pro/

NDSU PIO State Machines ECE 476

JSG - 13 - October 2, 2024

Using state-machines to drive 16 NeoPixels

Summary

PIO State Machines are a fairly unique feature of the Raspberry Pi Pico. With state machines, you are

able to drive devices which use nonstandard interfaces without having to resort to bit-banging. This can

improve the efficiency of code running on a Pi-Pico.

References
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf

https://www.seeedstudio.com/blog/2021/01/25/programmable-io-with-raspberry-pi-pico/

https://dev.to/blues/a-practical-look-at-pio-on-the-raspberry-pi-pico-50j8

https://www.instructables.com/Respberry-Pi-Pico-W-NeoPixels-Experiments-With-Pro/

NDSU PIO State Machines ECE 476

JSG - 14 - October 2, 2024

