
27. I2C Communications

I2C Functions

i2c = I2C(0) declare I2C as an object
i2c.scan() scan for I2C devices,

returns 7-bit addresses
i2c.writeto(42, b'123') Write three butes to device at address 42
i2c.readfrom(0x3a, 4) Read four bytes from device at address 0x3a
I2C.start() Generate a START condition on the bus
I2C.stop() Generate a STOP condidion on the bus
i2c.writeto_mem(addr, reg, data)
i2c.readfrom_mem(addr, reg, bytes)

I2C Communications

Previously, we looked at SPI communications for a Pi-Pico to talk to devices using a serial data interface.

I2C Communications is another way to communicate with devices using a serial data bus.

With I2C, there are two data lines:

SDA: A bi-directional bus where 8-bit data is sent between the bus master and the sensors

SCL: The clock output from the bus master

Pico

(Master)

SDA

SCL

SCLSDA SCLSDA SCLSDA

Slave #0 Slave #1 Slave #2

I2C Communications: two wire communications

With I2C communications, data is sent in packets which consist of

A Start Condition: SDA switches high to low before SCL switches from low to high

An address: 7 or 10 bit sequence unique to each slave

Read/Write Bit: 0: Master talking to slave, 1: Master requests data from slave

Data (data going to and from the master), and

A Stop Condition: SDA line switches from low to high after the SCL switches from low to high

Start Address r/w ack Data frame 1 Data Frame 2ack ack stop

7-10 bits 8-bits 8-bits

I2C Message

I2C Communications: Data is sent in packets

NDSU I2C Communications ECE 476

JSG - 1 - September 12, 2024

Communications with I2C is a little different that with SPI communications.

With SPI communications, you send commands to the slave for what it is to do. Many commands

are also followed by data.

With I2C communications, you are reading and writing to registers. These registers control how

the slave operates and relate to what data you are reading. More on this later

Wiring for a BME280

Only two wires are needed to communicate with I2C communications (plus a common ground of course)

VCC

GND

SCL

SDA

CSB

SDO

GP0/SDA

GP1/SCL

+3.3V

0V

BME280
Pico

Connections used for I2C communications with a BME280

Identifying I2C Devices:

Starting out, you need to identify the name of the device on the I2C bus. The following code will report

all I2C devices connected to pins 0 (sda) and 1 (scl). The BME280 reads as device 0x76 on the I2C bus:

import machine

i2c = machine.I2C(0, scl=machine.Pin(1), sda=machine.Pin(0))

devices = i2c.scan()

if(devices):
 for d in devices:
 pring(hex(d))

Shell

MPY: soft reboot
0x76

Scanning the I2C bus for devices. A BME280 (0x76) was found.

NDSU I2C Communications ECE 476

JSG - 2 - September 12, 2024

Registers: BME280

Next, assume a BME280 is placed on pins 0 and 1. With I2C communications, the way you send and

receive data from the sensor is by writing and reading from registers (8-bit locations in memory). Code

to read and write to registers is as follows.

i2c = machine.I2C(0, scl=machine.Pin(1), sda=machine.Pin(0))

def reg_write(i2c, addr, reg, data):
 msg = bytearray()
 msg.append(data)
 i2c.writeto_mem(addr, reg, msg)

def reg_read(i2c, addr, reg, nbytes):
 data = i2c.readfrom_mem(addr, reg, nbytes)
 return data

I2C routines to write or read from registers

Before you read and write to registers, however, you need to know what each register location means.

Form the data sheets, this can be found. For example, for a BME280 sensor, the registers mean the

following:

Control Registers:

0xF5: config Writing to 0xF5 sets

The standby time (low-power state) per sample

- Total time = standby time plus the measurement time

- Measurement time = 1ms x Number of oversamples

The filter's pole

- 1st-order digital filter with a pole at a:

kz
z−a

the type of communications:

config (0xF5)

7 6 5 4 3 2 1 0

tstandby
000 = 0.5ms

001 = 62.5ms
010 = 125ms
011 = 250ms
100 = 500ms

101 = 1000ms

000 = off
001: z = 1/2
010: z = 3/4
011: z = 7/8

1xx: z = 15/16

comm
0 = I2C
1 = SPI

0xF4: ctrl_meas Writing to 0xF4 sets

the oversampling for temperature,

the oversampling for pressure, and

the operation mode:

- sleep (no conversions)

NDSU I2C Communications ECE 476

JSG - 3 - September 12, 2024

- forced (one conversion)

- normal (constantly sampling at a rate determined by tstandby

ctrl_meas (0xF4)

7 6 5 4 3 2 1 0

oversampling (temp)
0 = 0x
1 = 1x
2 = 2x
3 = 4x
4 = 8x

5+ = 16x

oversampling (pres)
0 = 0x
1 = 1x
2 = 2x
3 = 4x
4 = 8x

5+ = 16x

mode
00 = sleep
01 = forced
10 = forced
11 = normal

0xF2: ctrl_hum: Writing to 0xF2 sets the oversampling rate for humidity

ctrl_meas (0xF4)

7 6 5 4 3 2 1 0

oversampling (hum)
0 = 0x
1 = 1x
2 = 2x
3 = 4x
4 = 8x

5+ = 16x

0xF3: Status: Status tells you when the A/D conversion is complete

bit 3 = 1: conversion complete

bit 3 = 0: conversion in process

20-Bit A/D Registers

Reading from the following registers gives the results from the 20-bit A/D. Note that this is the raw A/D

reading. A fairly complicated algorithm along with some calibration constants (also stored in registers)

converts these readings to relative humidity, degrees C, and hPa.

Name Memory Locations

Humidity
raw data reading (16 bits)

0xFD : 0xFE

Temperature
raw data reading (20 bits)

0xFA : 0xFB : 0xFC

Pressure
raw data reading (20 bits)

0xF7 : 0xF8 : 0xF9

NDSU I2C Communications ECE 476

JSG - 4 - September 12, 2024

Sample Code: I2C Reading of Temperature

The procedure to do a temperature reading is as follows:

First, the configuration registers are set up. If you want to read temperature using

In order to read the temperature using

config(0xf5) = 0x60

- 500ms sampling rate

- No filter

- I2C communications

ctrl_meas(0xf4) = 0xFF

- 16x oversampling

- normal operation

the set-up would be

set up BME280
reg_write(i2c, addr, 0xf5, 0x60)
reg-write(i2c, addr, 0xf4, 0xff)

Set-up for 250ms sampling rate, no filter, I2C, 16x oversampling, and normal operation

The raw A/D reading can be read in by

Waiting until bit #3 of Status is one (meaning the A/D conversion is done), then

Read the data at registers 0xFA : 0xFB : 0xFC

 while(ord(reg_read(i2c, addr, 0xf3, 1)) & 0x08):
 pass
 x0 = ord(reg_read(i2c, addr, 0xFA, 1))
 x1 = ord(reg_read(i2c, addr, 0xFA+1, 1))
 x2 = ord(reg_read(i2c, addr, 0xFA+2, 1))
 raw = ((x0 << 16) | (x1 << 8) | x2) >> 4

The raw A/D reading is read into variable raw (a 20-bit A/D result)

Once read in, the raw reading is converted to degrees Celsius as follows where {T1, T2, and T3} are

calibration constants also read from registers:

 def read_temp():
 while((ord(reg_read(i2c, addr, 0xf3, 1)) & 0x08) == 0):
 pass
 x0 = ord(reg_read(i2c, addr, 0xFA, 1))
 x1 = ord(reg_read(i2c, addr, 0xFA+1, 1))
 x2 = ord(reg_read(i2c, addr, 0xFA+2, 1))
 raw = ((x0 << 16) | (x1 << 8) | x2) >> 4
 x = raw - (T1<<4)
 ax2 = (x*x*T3) >> 34
 bx = x*T2 >> 14
 T = (ax2 + bx) / 5120
 return(T)

Reading the 20-bit A/D and converting the result to degrees C

NDSU I2C Communications ECE 476

JSG - 5 - September 12, 2024

The resulting main routine is then pretty simple:

t0 = time.ticks_ms()
for i in range(0,5):
 T = read_temp()
 t = time.ticks_ms()
 print((t-t0)/1000, T))

sec degC
0.003 25.3166
0.534 25.68203
1.075 25.75625
1.606 25.78144
2.148 25.80117

Reading in the temperature calibration constants: T1, T2, and T3

250 500 750 1000 1250 1500 1750 2000
20.8

20.9

21

21.1

21.2

21.3

21.4

21.5

Time (seconds)

Degrees C

Measured temperature with a BMP280 with delay = 1000ms, 16x oversampling, 2nd-order filter

NDSU I2C Communications ECE 476

JSG - 6 - September 12, 2024

BME280: Pressure

Similarly, pressure can be read by

Reading the raw pressure reading (blue code below), and

Converting to hPa using calibration constants

Note that you need to know the temperature in the calibration equation

def read_pres(T):
 x0 = ord(reg_read(i2c, addr, 0xF7, 1))
 x1 = ord(reg_read(i2c, addr, 0xF7+1, 1))
 x2 = ord(reg_read(i2c, addr, 0xF7+2, 1))
 raw = ((x0 << 16) | (x1 << 8) | x2) >> 4
 t_fine = round(T*25600/5)

 var1 = t_fine - 128000
 var2 = var1 * var1 * P6
 var2 = var2 + ((var1 * P5) << 17)
 var2 = var2 + (P4 << 35)
 var1 = (((var1 * var1 * P3) >> 8) + ((var1 * P2) >> 12))
 var1 = (((1 << 47) + var1) * P1) >> 33
 if var1 == 0:
 return 0
 p = 1048576 - raw
 p = (((p << 31) - var2) * 3125) // var1
 var1 = (P9 * (p >> 13) * (p >> 13)) >> 25
 var2 = (P8 * p) >> 19
 pressure = ((p + var1 + var2) >> 8) + (P7 << 4)
 pressure = pressure / 25600
 return(pressure)

Algorithm for reading in the pressure and returning in units of hPa

250 500 750 1000 1250 1500 1750 2000
1000.4

1000.5

1000.6

1000.7

1000.8

1000.9

Time (seconds)

hPa

Pressure Reading from a BME280 Sensor

This brings up an interesting question: Can you measure the height of a building using a barometer (i.e.

using a BME280 sensor)?

NDSU I2C Communications ECE 476

JSG - 7 - September 12, 2024

Using an on-line calculator, the air pressure at elevation should be:

https://www.omnicalculator.com/physics/air-pressure-at-altitude

Height (m) Air Pressure (hPa)

0 987.000

5 986.366

10 985.732

15 985.099

With a resolutions of 0.1hPa, you should be able to measure the height of a building. So, let's measure

the air pressure of AGHill on the NDSU campus.

AGHill Building - NDSU Campus

Starting out

Pause in the basement for 100 seconds,

Then go up the stairs to the third floor and pause for another 100 seconds,

Then go back down the stairs to the basement in the basement and pause for another 100 seconds

The net result is as expected:

As you go up the stairs, the air pressure drops

As you go back down to the basement, the air pressure goes back up

The air pressure drops as you go up as expected.

The total drop in air pressure from the basement to the 3rd floor is about 3.5hPa. This suggests a total

distance of 35m from the basement to the 3rd floor - which seems kind of high. That's what the data says

though.

NDSU I2C Communications ECE 476

JSG - 8 - September 12, 2024

0 50 100 150 200 250 300 350 400
983

984

985

986

987

988

Seconds

hPa

Basement Basement

3rd Floor

Measured air pressure when traveling from the basement of AG Hill to the third floor.

As you climb higher, the air pressure drops.

Summary:

I2C Communications is actually pretty easy with a Raspberry Pi-Pico. With it, you're reading and writing

to registers.

Writing to registers allows you to set up how the sensor operates (bandwidth, sampling rate, etc.)

Reading registers allows you to read the sensor's data or other information, such as calibration

constants.

The main challenge is finding the data sheets so you know what registers to read from and what registers

to write to.

NDSU I2C Communications ECE 476

JSG - 9 - September 12, 2024

GY521: Accelerometer

Previously, we looked at reading a GY-521 sensor using a library. With the I2C bus, you can access the

information directly. Assume the GY-521 is connected to pins 0 and 1

VCC

GND

SCL

SDA

XCL

ADO

GP0/TX

GP1/RX

+5V

0V

GY-521

Pico

<GY-521 connection>

The register locations can be found using the data sheets

0x1A: CONFIG

0x1A CONFIG

7 6 5 4 3 2 1 0

EXT_SYNC_SET DLP_CFG

EXT_SYNC_SET allows you to synchronize sampling based upon temperature, gyro, or acceleration.

Set to zero if not using.

DLP_CFG configures the digital low-pass filter

DLP_CFG Bandwidth (Hz) Delay (ms)

0 260 0

1 184 2

2 94 3

3 44 4.9

4 21 8.5

5 10 13.8

6 5 19

7 reserved

0x1C: ACCEL_CONFIG This register allows you to set the range of the accelerometer

0x1C: ACCEL_CONFIG

7 6 5 4 3 2 1 0

XA_ST YA_ST ZA_ST AFS_SEL

XA_ST enables the self-test of the accelerometer.

AFS_SEL sets the range

NDSU I2C Communications ECE 476

JSG - 10 - September 12, 2024

AFS_SEL full-scale

0 +/- 2g

1 +/- 4g

2 +/- 8g

3 +/- 16g

0x6B: PWR_MGMT_1 This lets you set the poer mode and clock source

0x6B: PWR_MGMT_1

7 6 5 4 3 2 1 0

DEVICE_
RESET

SLEEP CYCLE TEMP_DI
S

CLKSEL

SLEEP:

0 Normal operation

1 places it in a low-power sleep state

CYCLE:

0 Normal operation

1 Cycle between sleep state and taking one sample. Sleep time is set by LP_WAKE_CTRL (reg

108)

TEMP_DIS

0 Normal operation

1 Disable temperature sensor

CLKSEL

0 Internal 8MHz

1 PLL with X axis gyroscope as reference

7 Stops the clock and keeps the timing generator in reset

0x6C: PWR_MGMT_2 This allows you to set the frequency of wake-ups in Accelerometer Only Low

Power mode

The actual acceleration data is available from reading registers 0x3B to 0x40:

Addr (hex) Register Name R/W

3B ACCEL_XOUT_H R X acceleration: bits 15:8

3C ACCEL_XOUT_L R X acceleration: bits 7:0

3D ACCEL_YOUT_H R Y acceleration: bits 15:8

3E ACCEL_YOUT_L R Y acceleration: bits 7:0

3F ACCEL_ZOUT_H R Z acceleration: bits 15:8

40 ACCEL_ZOUT_L R Z acceleration: bits 7:0

The net result is to read the acceleration, first set up the sensor. Assuming

260Hz bandwidth

NDSU I2C Communications ECE 476

JSG - 11 - September 12, 2024

+/- 2g range

8MHz internal oscillator

the set-up code is

i2c = machine.I2C(0, scl=machine.Pin(1), sda=machine.Pin(0))

Print out any addresses found
devices = i2c.scan()
if devices:
 for d in devices:
 print('I2C Device Found:',hex(d))

addr = devices[0]
print('Communicating with ', hex(addr))

set bandwidth
reg_write(i2c, addr, 0x1a, 6)
set range to +/- 2g
reg_write(i2c, addr, 0x1c, 0x00)
RANGE = 2
set clock freq
reg_write(i2c, addr, 0x6b, 0)

The acceleration can then be read as

def accel_read(reg):
 x = reg_read(i2c, addr, reg, 2)
 y = (x[0] << 8) + x[1]
 if(y > 0x8000):
 y = y - 0x10000
 y = y / 0x8000
 return(y)

x = accel_read(0x3b) * RANGE
y = accel_read(0x3d) * RANGE
z = accel_read(0x3f) * RANGE

With this, you can measure your XYZ acceleration during freefall and while jumping. First, let's drop

the GY521 sensor from a distance of about 50cm. While it's in free-fall, the acceleration should be zero.

Trying this with a sampling rate of 10ms and a bandwidth of 5Hz results in the following graph.

The sensor is dropped at about 0.61 seconds (acceleration drops to zero)

The sensor hits the ground at 1.00 seconds (acceleration jumps on impact)

Defining the time of freefall as when the net acceleration is less than 0.5g's (somewhat arbitrary) gives

the measured distance of 50cm as expected.

Bandwidth Time
|accel| < 0.5g

Distance

5Hz 0.32 s 50.1 cm

NDSU I2C Communications ECE 476

JSG - 12 - September 12, 2024

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (seconds)

Accel

Free-Fall

Drop Test - 5Hz Bandwidth

Now that that works, let's measure how high I can jump. Holding the sensor while jumping

With a bandwidth of 10Hz and

With a bandwidth of 260Hz

allows you to measure your air time. From this, the height of the jump can be computed as

d =
1

2
at2

where t is the time from the apogee to the ground, or

d =
1

2
a

t

2

2

=
1

8
at2

where t is the total time of the jump. Using the total time results in my vertical leap being measured as

about 13 to 19cm. Not really impressive - it use to be more. Happens when you get old.

Bandwidth Time
|accel| < 0.5g

Distance

10Hz 0.33 s 13.34 cm

260Hz 0.40 s 19.6 cm

Measured air time with a GY521 accelerometer along with the corresponding height of the jump.

NDSU I2C Communications ECE 476

JSG - 13 - September 12, 2024

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (seconds)

Accel

Air Time

Jump: 260Hz Bandwidth. Air time is 400ms for a height of 19cm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (seconds)

Accel

Air Time

Jump: 10Hz Bandwidth. Air time = 330ms for a height of 14cm

NDSU I2C Communications ECE 476

JSG - 14 - September 12, 2024

