
25. SCI Communications & GPS

Displaying a car's speed using a GPS sensor

Introduction:

Another sensor available for use with a Pi-Pico is a GPS sensor. These sensors use the global positioning
sattelites to tell you your location on Earth incuding

Latitude

Longitude

Elevation

Speed in knots, and

Heading in degrees

With a GPS sensor, there's a wide variety of things you can do. This lecture looks at reading a GPS
sensor and pulling out your position and speed. With that, we'll build adevice to

Tell you where you parked your car, and

Display your speed in mph on the graphics display.

SCI Communication

GPS modules communicate using SCI communications. SCI (serial communications interface) is a type
of asynchronous communications. With SCI communications, there is no clock and no chip select: only
transmit and receive. Data is sent in 8-bit packets which are initiated with a start bit. Eight bits follow
with a fixed bit length. For example, with 9600 baud communications, each bit would be 1/9600 second
long.

Start 7 6 5 4 3 2 1 0

idle idle
8 data bits, MSB first

1/9600 second

SCI Write: Start bit comes first

When receiving serial data, the falling edge of the start bit indicates the start of a byte. The receiver then
samples the middle of each bit to determine the message.

NDSU SCI Commiunications & GPS ECE 476

JSG - 1 - July 20, 2024

Start 7 6 5 4 3 2 1 0

idle idle
8 data bits, MSB first

1.5T T T T T T T T

Sample

GPS Read: Sample each bit in the middle to determine its value.

With a Pi-Pico, you have two SCI ports available:

SCI0:

- TX=GP0, RX=GP1, or
- TX=GP12, RX=GP13, or
- TX=GP16, RX=GP17
SCI1

- TX=GP4, RX=GP5, or
- TX=GP8, RX=GP9

The procedure to initialize a SCI port is

from machine import UART

uart = UART(0, 9600)
uart.init(9600, bits=8, parity=None, stop=1, tx=0, rx=1)

Different ways to read and write to a UART are:

uart.read(5) # read 5 characters into a buffer

uart.read() # read all available characters

uart.readline() # read a line (stop at carriage return)

uart.readinto(buf) # read and store in a buffer
uart.write('Hello') # write to the SCI port

NDSU SCI Commiunications & GPS ECE 476

JSG - 2 - July 20, 2024

GPS Modules & Messages

GPS Sensor from Amazon

GPS sensors use satellites to tell you your location. They're actually really easy to use:

Connect power and ground to the sensor

Connect the serial out (TX) to the serial in (RX) on the Pi-Pico

Receive serial data at 9600 baud (default).

Hardware: To connect a GPS receiver to your Pi-Pico, pick one of the two SCI modules. If you stick
with the standard baud rate (9600 baud), only one wire is needed (plus power and ground of course).

GP1/RX

GP9/RX

SCI0

SCI1

GPS

GPS

Pi-Pico

3.3V

3.3V

ant

ant

Hardware for connecting a GPS module to a Pi-Pico (Only one GPS module is needed: your pick which SCI port is used)

Once the GPS module is connected to a Pi-Pico, the message can be read. For example, the following
code reads a GPS receiver:

NDSU SCI Commiunications & GPS ECE 476

JSG - 3 - July 20, 2024

from machine import UART
from time import sleep

uart = UART(1, 9600)
uart.init(9600, bits=8, parity=None, stop=1, tx=8, rx=9)

while(1):
 x = uart.readline()
 sleep(0.2)

b'$GPGGA,205246.00,4649.55240,N,09652.11367,W,1,07,1.17,283.7,M,-27.5,M,,*69\r\n'
b'$GPGSA,A,3,23,18,10,27,15,32,24,,,,,,3.59,1.17,3.39*0C\r\n'
b'$GPGSV,2,1,08,08,19,311,09,10,52,288,24,15,28,055,21,18,47,147,25*78\r\n'
b'$GPGSV,2,2,08,23,77,015,19,24,39,100,21,27,32,277,1
b'$GPRMC,205247.00,A,4649.55258,N,09652.11395,W,0.306,,140724,,,A*62\r\n'
b'$GPVTG,,T,,M,0.306,N,0.567,K,A*22\r\n'
b'$GPGGA,205247.00,4649.55258,N,09652.11395,W,1,07,1.14,284.1,M,-27.5,M,,*6E\r\n'
b'$GPGSA,A,3,23,18,10,27,15,32,24,,,,,,2.49,1.14,2.22*04\r\n'
b'$GPGSV,2,1,08,08,19,311,08,10,52,288,25,15,28,055,22,18,47,147,26*78\r\n'
b'$GPGSV,2,2,08,23,77,015,19,24,39,100,21,27,32,277,1
b'$GPRMC,205248.00,A,4649.55297,N,09652.11403,W,0.312,,140724,,,A*63\r\n'
b'$GPVTG,,T,,M,0.312,N,0.578,K,A*29\r\n'
b'$GPGGA,205248.00,4649.55297,N,09652.11403,W,1,07,1.14,284.5,M,-27.5,M,,*6E\r\n'
b'$GPGSA,A,3,23,18,10,27,15,32,24,,,,,,2.49,1.14,2.22*04\r\n'

The different messages mean the following:

$GPGGA,205246.00,4649.55240,N,09652.11367,W,1,07,1.17,283.7,M,-27.5,M,,*69

UTC time (hhmmss.sss). Data was recorded at 20:42:46.00 seconds GMT

Latitude (ddmm.mmmm). 46 degrees, 49.55240 minutes north

Longitude (ddmm.mmmm) 096 degrees 42.11367 minutes west

Fix

- 0: Fix not available or invalid
- 1: GPS SPS mode, fixed valid
- 2: Differential GPS, SPS mode, fix valid
Satellites used (07, 1.17)

Altitude (283.7 meters)

$GPGSA,A,3,23,18,10,27,15,32,24,,,,,,3.59,1.17,3.39*0C

Satellites used in the position solution

{3, 23, 18, 10, 27, 15, 32, 24}

$GPGSV,2,1,08,08,19,311,09,10,52,288,24,15,28,055,21,18,47,147,25*78

The number of satellites in view

$GPRMC,205247.00,A,4649.55258,N,09652.11395,W,0.306,,140724,,,A*62

Time, Data, Position, Course, and Speed

A = valid data, V = invalid data

Time (hhmmss.ss). Current time is 20:52:47.00

NDSU SCI Commiunications & GPS ECE 476

JSG - 4 - July 20, 2024

Latitude (ddmm.mmmm). Location is 46 deg 49.55258 minutes north

Longitude (ddmm.mmmm) Location is 096 deg 52.11395 minutes west

Speed in knots: Speed is 0.306 knots

Direction (in degrees)

Reading in a GPS Message

The Python command uart.readline() should in theory read each line of a GPS message, one by one. My
experience is this command is inconsistent in capturing and separating each message. So, instead of
using this line, custom subroutines were written using bottom up programming.

Level 1: GPS_Read_Line(chan):

The first step is to read each message into a string. The subroutine GPS_Read_Line

Looks for a $ symbol to indicate the start of a message. If a second $ is read in, the previous
message is discarded and a new message is begun

It then reads in each byte from the serial port, byte by byte, into a string array

The string array is terminated when a carriage return (ascii 13) is read.

This is placed inside a while() loop so that when called, the program will lock up in this subroutine until
a GPS message is received.

def GPS_Read_Line(chan):
 flag = 0
 n = 0
 msg = ''
 while(flag == 0):
 if(chan == 0):
 x = uart0.read(1)
 else:
 x = uart1.read(1)
 if(x != None):
 x = ord(x)
 if(chr(x) == '$'):
 msg = ''
 if(x == 13):
 flag = 1
 else:
 msg = msg + chr(x)
 return(msg)

To test this subroutine, the results of a call to this subroutine are printed over and over:

NDSU SCI Commiunications & GPS ECE 476

JSG - 5 - July 20, 2024

while(1):
 msg = GPS_Read_Line(0)
 print(msg)

shell

$GPVTG,,T,,M,0.970,N,1.797,K,A*25
$GPGGA,173924.00,4649.55763,N,09652.11931,W,1,06,1.27,288.7,M,-27.5,M
,,*60
$GPGSA,A,3,29,18,15,13,20,23,,,,,,,2.52,1.27,2.18*0F
$GPGSV,4,1,16,01,21,283,17,05,55,055,07,07,02,027,,11,08,099,*7C
$GPGSV,4,2,16,13,42,105,19,15,45,156,12,16,11,324,,18,50,296,19*7F
$GPGSV,4,3,16,20,26,062,14,23,20,238,20,25,00,206,,26,16,289,*75
$GPGSV,4,4,16,29,64,190,19,30,03,056,,46,28,221,,48,30,216,*77
$GPGLL,4649.55763,N,09652.11931,W,173924.00,A,A*7F
$GPRMC,173925.00,A,4649.55729,N,09652.11947,W,1.143,,180724,,,A*67
$GPVTG,,T,,M,1.143,N,2.116,K,A*20

Level 2: String_to_Num()

Within each message are the numbers we want to pull out: latitude, longitude, and speed. These are in
fixed fields within each line - assuming the line was read in correctly. For example assume a GPRMS
message is read into a string, x:

x = '$GPRMC,173925.00,A,4649.55729,N,09652.11947,W,1.143,,180724,,,A*67'

The fields can be pulled out as:

$GPRMC, 173925.00 46 49.55729 096 52.11947 1.143

location x[7:16] x[19:21] x[21:29] x[32:35] x[35:43] x[46:51]

meaning hhmmss
GMT

latitude
degrees

latitude
minutes

longitude
degrees

longitude
minutes

speed
knots

The python command float() should work - but if the string is read in wrong float crashes the program.
To read in each string while avoiding a program crash, subroutine String_to_Num() was written.

For each element in string X:

The value is checked if it is a number or a decimal

If it's a number, the value being read is updated and stored in variable y

If it's a decimal, a flag is set indicating that the following digits are decimal values

If an invalid chacter is read, a global variable Error_Flag is set

NDSU SCI Commiunications & GPS ECE 476

JSG - 6 - July 20, 2024

def Str2Num(X):
 global Error_Flag
 n = len(X)
 y = 0
 flag = 0
 k = 0
 for i in range(0,n):
 z = X[i]
 if(z in {'0','1','2','3','4','5','6','7','8','9','0','.'}):
 if(z == '.'):
 flag = 1
 else:
 if(flag == 0):
 y = 10*y + int(z)
 else:
 k -= 1
 y = y + int(z) * (10 ** k)
 else:
 Error_Flag = 1
 return(y)

To check this routine, several characters can be checked. For a valid number:

Error_Flag = 0
msg = '123.456'
print(Str2Num(msg), Error_Flag)

shell

123.456 0

For an invalid number:

Error_Flag = 0
msg = '1G3.456'
print(Str2Num(msg), Error_Flag)

shell

13.456 1

Level 3: GPS_Read(chan)

Once each line has been read and the fields can be parsed, the next level up pulls out each field within
the GPS message. This routine looks for either a $GPRMC or a $GPGGA message. Once found, the
latitude and longitude is read in. A flag is used to keep the subroutine looping until a valid message is
received.

In the following code, the latitude and longitude are returned in units of degrees.

notes: You lose a little resolution by dividing the minutes by 60. In subsequent programs, only the
minutes are used (the degrees are ignored). I'm not moving enough for the degrees to matter, so in my
case, that doesn't hurt anything.

NDSU SCI Commiunications & GPS ECE 476

JSG - 7 - July 20, 2024

def GPS_Read(chan):
 flag = 0

 while(flag == 0):
 x = GPS_Read_Line(chan)
 if(len(x) > 52):
 if(x[3] == 'R'): # $GPRMC
 flag = 1
 time = Str2Num(x[7:16])
 LatD = Str2Num(x[19:21])
 LatM = Str2Num(x[21:29])
 LonD = Str2Num(x[32:35])
 LonM = Str2Num(x[35:43])
 speed = Str2Num(x[46:51])

 return([time, LatD + LatM/60, LonD + LonM/60, speed])

To test this routine, the field are pulled out of the GPRMC messages and displayed

while(1):
 [t, x, y, v] = GPS_Read(0)
 msg0 = str('{:9,0f}'.format(t) + ' ')
 msg1 = str('{:11.7f}'.format(x) + ' ')
 msg2 = str('{:11.7f}'.format(y) + ' ')
 msg3 = str('{:9.4f}'.format(v) + ' ')
 print(msg0 + msg1 + msg2 + msg3)

shell

183300 46.8258247 96.8686447 0.1620
183301 46.8258247 96.8686447 0.1150
183302 46.8258286 96.8686447 0.0290
183303 46.8258286 96.8686447 0.0490

Note:

Column #1 (time) is incrementing by one. Each GPRMC message is being read (they come in
once per second)

Column #2 (latitude) is reading in as 46.8258247 degrees north (Fargo)

Column #3 (longitude) is reading as 96.8686447 degrees west (Fargo)

Column #4 (speed in knots) is reading in as zero-ish. The sensor isn't moving during this time.

At this point, everything looks good.

Where's My Car?

Level 4: Main Routine

this is a fairly long routine. Please see lecture #25 on Bison Academy for the listing

Once it's confirmed that the GPS sensor is being read correctly, the main routine can be written. The
following code

Reads in a GPS sensor on UART0

Rather than displaying the latitude and longitude, these are displayed in maters relative to a
reference position

NDSU SCI Commiunications & GPS ECE 476

JSG - 8 - July 20, 2024

Button GP15: When you press button GP15, the current position is recorded as the reference
position. For example, when you park your car, press GP15. As you move about, your distance
from your car is then displayed on the GPS.

Button GP14: When you press button GP14, the data recording is toggled. When recording is
turned on

- a single beep is played, indicating that recording has started
- a Recording message is displayed in the upper right corner of the screen
- A data file is opened for appending, and
- Data is recorded to that file
- (the file name is defined at the start of the program)
When recording is turned of

- Two beeps are played indicating that recording to a file has been paused
- The Recording message is cleared, and
- The file is closed

TFT Display: Your latitude in minutes, longitude in minutes, and where you are relative to home position in meters

GP15 resets the home position. GP14 toggles data recording.

The data file contains four columns of number

Latitude in minutes

Longitude in minutes

Distance north of your home position in meters

Distance west of your home position in meters

Latutude Longitude North West
(minutes) (minutes) (m) (m)
49.5489616 52.1171951 0.6142 0.4879
49.5489616 52.1171951 0.6142 0.4879
49.5490990 52.1174164 0.8684 0.7680
49.5489388 52.1175575 0.5719 0.9468

Text file for Wheres_My_Car.py. GPS position and distance to home position in meters

NDSU SCI Commiunications & GPS ECE 476

JSG - 9 - July 20, 2024

The conversion from latitude and longitude to meters is as follows:

The Earth's equatorial circumference is 40,075km (space.com). Each degree of longitude at the equator
corresponds to a distance of 111.317km

10 =
40,075km

360
= 111.319km

Each minute corresponds to a distance of 1855.285m

1 =
40,075km

60⋅360
= 1, 855.324m

Scale by your latitude (assume 46.8258 degrees north)

1 = 


40,075km

60⋅360

 ⋅ cos (46.82580) = 1, 269.448m

So, in Fargo, one minute of longitude corresponds to 1269.448 meters east/west.

The Earth's polar circumference is 40,008km (space.com). Each degree of latitude corresponds to

10 =
40,008km

360
= 111.133km

Each minute of latitude corresponds to 1852.222 meters

1 =
40,008km

60⋅360
= 1852.222m

With these conversions, if you know how far you are from home in terms of minutes of an arc, you can
compute your distance in meters.

Noise on GPS Signals

Ideally, your GPS readings should be your position on the Earth. In practice, your GPS position will drift
even when stationary. Disturbances in atmospheric conditions, reflections, etc. can cause your recorded
GPS position to drift even when stationary.

To illustrate this, the previous program was used to measure the drift of a stationary GPS sensor:

The GPS sensor was turned on for ten minutes

The Home button was pressed (GP15) to record the current position, then

The position of the GPS sensor over a span of 10 minutes was recorded (600 data points).

The resulting position reading is as follows:

NDSU SCI Commiunications & GPS ECE 476

JSG - 10 - July 20, 2024

0 100 200 300 400 500 600
-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

Time (seconds)

meters

N/S
E/W

Drift in GPS signal for a stationary target

Even though the GPS sensor is stationary, the GPS reading is drifting. This allows you to estimate the
certainty of the above GPS position: the 90% confidence interval is right around +/- five meters

mean st dev 1.66 * st dev

N/S -1.025 m 1.897 m 3.15 m

E/W -0.436 m 2.751 m 4.57 m

Based upon readings for a stationary GPS sensor, position is known within about 5 meters (3.15m and 4.57m)

This also shows up when the sensor is moving. The following plot shows the recorded GPS position
when walking around a rectangle (shown in red).

0 5 10 15 20 25 30 35 40 45
-5

0

5

10

15

North (m)

East (m)

Recorded GPS position when walking around a rectangle (blue) and actual position (red)

NDSU SCI Commiunications & GPS ECE 476

JSG - 11 - July 20, 2024

Differential GPS

One way to reduce the noise on a GPS sensor is to use differential GPS. The idea here is to have two
GPS receivers:

One is stationary with a known position

The other GPS sensor is free to move about.

By taking the difference in the GPS readings, noise in the GPS signal should be greatly reduced. This
assumes of course that the noise is highly correlated (i.e. both sensors see the same atmospheric
disturbances, etc.)

In Python, this can be done by attaching two GPS receivers to your Pi-Pico. Presumably if one GPS is to
move around, it would be connected through a wireless link. For now, both are connected directly.

GP1/RX

GP9/RX

SCI0

SCI1

GPS0

GPS1

Pi-Pico

3.3V

3.3V

ant

ant

For differential GPS, two GPS receivers are used

In terms of software, both GPS receivers are read at each time point. Treating GPS0 as the reference
signal, the location of GPS1 can be found by taking the difference in the two readings: (note: Error_Flag
is set if there is an error in either GPS readings. The while-loop keeps going until both sensors give a
valid position.)

while(1):
 Error_Flag = 1
 while(Error_Flag == 1):
 Error_Flag = 0
 [t0, x0, y0, v0] = GPS_Read(0)
 [t1, x1, y1, v1] = GPS_Read(1)
 x = x1 - x0
 y = y1 - y0

Differential GPS code: The output is the position of GPS1 relative to GPS0

In theory, this should result in a large drop in the standard deviation of the GPS position (x,y). To check
if this works, GPS readings for both channels were recorded for ten minutes with both modules
stationary, 20cm apart.

NDSU SCI Commiunications & GPS ECE 476

JSG - 12 - July 20, 2024

0 100 200 300 400 500 600
-6

-4

-2

0

2

4

6

8

Time (seconds)

North (m)

Reported North/South location of two stationary GPS sensors

0 100 200 300 400 500 600
-6

-4

-2

0

2

4

Time (seconds)

West (m)

GPS1

GPS0

Reported East/West location of two stationary GPS sensors

Ideally, taking the difference in the reported GPS positions should give a better reading due to the noise
canceling. This should show up in a reduction of the standard deviation. Actually, the standard
deviation gets worse:

std(GPS0) std(GPS1) std(GPS0-GPS1)

N/S 2.7507 m 1.9012 m 2.9768 m

E/W 1.8974 m 1.1917 m 1.9349 m

Standard deviation (spread) of GPS signals when stationary

The assumption with differential GPS is that the noise is highly correlated between the moving sensor
(GPS1) and the stationary reference sensor (GPS0). The correlation coefficients between the two GPS
signals can be found as (ECE 341 lecture #19):

cov(x, y) = E(xy) − E(x)E(y)

NDSU SCI Commiunications & GPS ECE 476

JSG - 13 - July 20, 2024

ρx,y =
cov(x,y)

σxσy

In Matlab:

>> num = mean(x0 .* x1) - mean(x0)*mean(x1);
>> den = std(x0) * std(x1);
>> rhox = num / den

rhox = 0.2214

>> num = mean(y0 .* y1) - mean(y0)*mean(y1);
>> den = std(y0) * std(y1);
>> rhoy = num / den

rhoy = 0.2817

Translation: The two GPS sensor readings are slightly correlated (22% and 28%). This isn't enough to
improve the GPS readings however:

If the correlation was zero, the variances would add when you subtract the signals. This is
property of normal distributions.

If the correlation was one, the variances would subtract when you subtract the signals. A
correlation of one means the signals are the same.

A correlation of 0.22 or 0.28 is somewhere in-between - but closer to a correlation of zero. Taking the
difference actually made things worse.

Differential GPS does exist and it does work. Apparently, you need a better GPS sensor and/or antenna
to make differential GPS work, however.

GPS Speedometer

GPS Speedometer: A vehicle's speed is displayed using a GPS module

Finally, let's use the GPS sensor to measure your speed in mph. The $GPRMC returns your speed in
knots. To convert to mph, multiply by 1.15077

mph = knots ⋅ 1.15077

NDSU SCI Commiunications & GPS ECE 476

JSG - 14 - July 20, 2024

The fonts available in LCD.py are too small to see when driving, so let's also create a 100 x 200 font for
numbers. This simply uses rectangles to mimic a 7-segment display

a

b

c

d

e

f

g

(0,0)

(100,200)

To make the display easier to read, 100 x 200 pixel numbers are used

The subroutine Big_Display(N, x, y) displays a single digit (0..9) using seven rectangles with the upper
left corner being (x,y). It then draws a solid box for rectangles {a, b, c, d, e, f, g} either in white or black.
This routine isn't fancy but works. With a little coding, it could probably be shortened considerable.

def Big_Display(N, x, y):
 T = 15
 c1 = LCD.RGB(250,250,250)
 c0 = 0
 if(N == 0):
 LCD.Solid_Box(x+T,y,x+100-T,y+T,c1)
 LCD.Solid_Box(x+100-T,y,x+100,y+100,c1)
 LCD.Solid_Box(x+100-T,y+100,x+100,y+200,c1)
 LCD.Solid_Box(x+T,y+200-T,x+100-T,y+200,c1)
 LCD.Solid_Box(x,y+100,x+T,y+200,c1)
 LCD.Solid_Box(x,y,x+T,y+100,c1)
 LCD.Solid_Box(x+T,y+100-T,x+100-T,y+100,0)
 if(N == 1):
 :

Your speed is displayed with the routine Display(Speed). This routine

Pulls out the digits one by one (10s, 1's, 0.1s) then displays each digit on the TFT.

def Display(Speed):
 X = int(Speed*10)
 A0 = X % 10
 X = X // 10
 A1 = X % 10
 X = X // 10
 A2 = X % 10
 Big_Display(A2, 50, 50)
 Big_Display(A1, 170, 50)
 Big_Display(A0, 300, 50)
 LCD.Solid_Box(280,235,295,250,LCD.RGB(250,250,250))

NDSU SCI Commiunications & GPS ECE 476

JSG - 15 - July 20, 2024

The main loop then

Reads the GPS sensor, picking out your speed in knots

Checks button GP14 for turning recording on and off, and

Displays your GPS speed on the LCD with a 100x200 font

while(Button15.value() == 1):
 Error_Flag = 1
 while(Error_Flag == 1):
 Error_Flag = 0
 [t, x, y, v] = GPS_Read(0)
 if(Button14.value() == 0):
 Record_Flag = not Record_Flag
 if(Record_Flag):
 Beep()
 f = open(FileName, "a")
 print('Recording')
 LCD.Text('Recording',5,5,Pink,Navy)
 else:
 Beep()
 sleep(0.1)
 Beep()
 f.close()
 print('File Closed')
 LCD.Text(' ',5,5,Pink,Navy)
 while(Button14.value() == 0):
 pass

 Display(v*1.15078)

 if(Record_Flag):
 msg = str('{:9.4f}'.format(v*1.15077) + ' ')
 f.write(msg + '\n')

Main Routine for GPS Speedometer

Resulting display of your speed in mph

In order to test the accuracy of the speedometer, you need some reference to test against. I don't have
that. So, I placed the GPS speedometer in my car, found a long straight flat road, and set the cruise
control to 40mph then 50mph. The results are as follows:

NDSU SCI Commiunications & GPS ECE 476

JSG - 16 - July 20, 2024

0 20 40 60 80 100 120 140
35

40

45

50

55

Time (seconds)

mph

Cruise Control set to 40mph

Cruise Control set to 50 mph

Measured speed with the cruise control set to 40mph and 50mph

There is variation in the readings. Between 10 and 70 seconds (when the cruise control was set to
40mph), the reading has

Mean = 39.8913 mph

St Dev = 0.1977 mph

Between 100 and 120 seconds (when the cruise control was set to 50mph), the readings have

Mean = 50.0601 mph

St Dev = 0.1954 mph

I can't tell whether this variation is due to the cruise control not keeping the speed absolutely steady or
the GPS sensor's noise. Regardless, it's still a pretty accurate and easy to read speedometer.

Summary

GPS sensors are fairly inexpensive costing as little as $5 each from Amazon. With them you can
determine where you are to within about 5 meters and your speed to within about 0.3 mph. Presumably,
more expensive GPS sensors will work even better.

GPS sensors communicate with the Pi-Pico using SCI protocol. With some coding, the GPS messages
can be pulled out and the fields can be read fairly easily. What you do with this is up to you and your
creativity.

References

Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

NDSU SCI Commiunications & GPS ECE 476

JSG - 17 - July 20, 2024

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

NDSU SCI Commiunications & GPS ECE 476

JSG - 18 - July 20, 2024

