
21. Temperature Sensors & Recursive Least Squares

Introduction:

One of the things that is fairly easy to measure is temperature. This lecture looks at measuring

temperature using

Thermistor

Thermal diode

Digital temperature

Once we can measure temperature, the thermal time constant of a coffee cup is measured, using both data

collection and Matlab as well as recursive least squares on a Pi-Pico

Resistance:

One of the simplest things to measure is resistance. By using a voltage divider, resistance can be

converted to voltage - which the A/D input can read directly.

Pi-PicoAN2

3.3V R0

R

V

voltage divider

For this circuit, the resistance - voltage relationship is

V = 


R

R+R0


 3.3V

or solving for R in terms of V:

R = 


V

3.3−V


R0

By measuring voltage, you can compute the corresponding resistance.

The resolution of this ohmmeter depends upon the resistor values. Assuming R0 = R = 1k, the nominal

voltage you read is 1.65V

V = 


1000

1000+1000

 3.3V = 1.65V

The Pi-Pico has a 12-bit A/D, meaning the smallest change in voltage it can detect is 805.9uV

dV = 3.3V

4095
= 805.9µV

The change in resistance that produces that change in voltage is the resolution of the ohmmeter (the

smallest change in resistance you can detect)

V = 1.65V + 805.9µV

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 1 - July 12, 2024

R = 


V

3.3−V


 1000 = 1000.977Ω

dR = 0.977Ω

The smallest change in resistance a Pi-Pico can detect is 0.977 Ohms at 1000 Ohms (0.0977%)

Temperature Sensors: Thermistor

Once you can measure resistance, you can measure pretty much any sensor whose output is resistance. A

thermistor is one such sensor.

1k thermistor from Digikey

A thermistor is essentially a piece of intrinsic silicon. At zero degrees Kelvin, all of the electrons in a

silicon crystal are tied up in covalent bonds. This means there are no free electrons to carry current, and

hence, infinite resistance.

As temperature goes up, more and more electrons escape their covalent bonds creating charge carriers

(both holes and electrons - a topic covered in Electronics.) More charge carriers means less resistance.

In general, the resistance - temperature relationship for a thermistor is of the form:

R = exp a + b

K
+ c

K2
+ d

K3
+ ...

where K is the temperature in degrees Kelvin and {a, b, c, d, ...} are constants. If you go with a two-term

model

R = exp a + b

K




you can rewrite this as

R = R25 ⋅ exp 
B

T+273
− B

298



where

T is the temperature in degrees C (T + 273 = K),

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 2 - July 12, 2024

R25 is the resistance at 25C, and

B is a constant

If you look up the data sheets for a thermistor, you can find the B parameter

Digikey Part Number: 495-2156-ND

R25: 1k

B25/100: 3930

Dissipation Factor: 3.5 mW/K

This gives you the model for the thermistor:

R = 1000 ⋅ exp 
3930

T+273
− 3930

298

Ω

Add a voltage divider

V = 


R

R+1000

 3.3V

Solving backwards

R = 


V

3.3−V


 1000Ω

T =





3930

ln 
R

1000

 +

3930

298






 − 273

Putting this together, as temperature changes, voltage changes - with the resulting relationship shown

below for -10C < T < +60C. What this tells you is

If you know the temperature, you know the voltage

If you know the voltage, you know the temperature (it's a temperature sensor)

-10 0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

Degrees C

V

Temperature - Voltage relationship for a thermistor & voltage divider

The resolution is again the smallest change in temperature you can detect with the 12-bit A/D on the

Pi-Pico. Assuming 25C

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 3 - July 12, 2024

R = 1000Ω

V = 1.65V

The smallest change in voltage you can detect is 805.9uV.

V = 1.65V + 805.9µV

When R = 1000 Ohms, the smallest change in resistance you can detect is 0.977 Ohms

R = 1000.977Ω

The corresponding temperature is

T =





3930

ln 
R

1000

 +

3930

298






 − 273

T = 24.9779C

The difference from 25C is the resolution in temperature:

dT = T − 25 = −0.02207C

With this setup, a Pi-Pico can measure temperature with a resolution of 0.022 degrees C.

As an example of using a thermistor, measure the temperature of an LED light bulb when turned on. The

circuit is simply a voltage divider:

Pi-PicoAN2

Thermistor

10k

7.5k

3.3V

Hardware for measuring the temperature of an LED light using a thermistor

Software simply

Uses timer interrupts to sample once per second

Measures the voltage of AN2, and

Computes the corresponding temperature

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 4 - July 12, 2024

while(time < 300):
 while(flag == 0):
 pass
 flag = 0

 V = kV * a2d2.read_u16()
 R = V / (3.3-V) * 7500
 Temp = 3930 / (log(R/10000) + (3930/298)) - 273

 print(time, V, R, Temp)

 file1.write(str('{: 6.1f}'.format(time)) + " ")
 file1.write(str('{: 7.4f}'.format(Temp)) + " ")
 file1.write("\n")

 time += T

Main loop for 21_Thermistor.py (complete code on Bison Academy)

The resulting temperature vs. time plot is presented in the following figure. Note from this figure:

Temperature increases as a decaying exponential. This isn't too surprising: temperature follows

the heat equation (coupled first-order differential equations).

There is considerable noise in the data.

The noise is due to using long wires going from the Pico board to the sensor. These wires act as antennas

- picking up stray RF interference. To reduce the noise,

Twisted pair wires could be used (reduces the area between the wires, the +/- twist cancels most of

the RF energy)

Shielded twisted pair wires would reduce the RF interference even more, or

Reducing the length of the leads would also help.

0 50 100 150 200 250 300
25

30

35

40

45

50

Time (seconds)

Degrees C Temperature of an LED Light Bulb

The temperature of an LED light bulb when turned on

The noise on the signal is due to using long separate wires without shielding

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 5 - July 12, 2024

Temperature Sensor: TMP36

TMP36 Analog Temperature Sensor (Digikey)

Another way to measure temperature is to measure the voltage drop across a diode. From Electronics,

the voltage drop across a diode is a function of temperature (ECE 320 lecture #5):

Vd = VT ⋅ ln 
NAND

n i
2




If you plot the voltage drop across a diode (Vd) vs. temperature, you get a line that's almost linear with

respect to temperature

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

Degrees C

Vd (Volts)

Voltage drop across a diode vs. temperature (ECE 320 lecture #5)

A TMP36 is simply a sensor which uses this characteristic of diodes to measure temperature.

From the data sheets for a TMP36 (www.Digikey.com),

The operating voltage range is 2.7V to 5.5V (i.e. 3.3V operation works)

The output at 25C is 750mV (i.e. it's a silicon diode)

The sensitivity is +10mV / degree C

Linearity is within 0.5C over a range of -40C to +125C

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 6 - July 12, 2024

note: with diodes, the voltage drops with temperature. The TMP36 has additional circuitry so that the

output increases by 10mV/C rather than drops.

The output voltage should be:

-40C 25C +125C

100mV 750mV 1.750V

Based upon the voltage, you can then compute the temperature:

T = 100V − 50

To interface with a Pi-Pico, you can connect it directly to the A/D input. This gives a resolution of 0.08

degrees C:

A/D resolution = 805.9uV

 resolution in degrees C



805.9µV

10mV/C

 = 0.08059C

Pi-PicoAN2

V+Vs

Vout

GND

TMP36

3.3V

View from Bottom

Interface for a TMP36 temperature sensor to a Pi-Pico

With this sensor, you can measure things, such as the temperature of an incandescent light bulb when

turned on. The code is almost identical to the previous code, only with a slight change in how

temperature is computed:

while(time < 300):
 while(flag == 0):
 pass
 flag = 0

 V = kV * a2d2.read_u16()
 Temp = 100.0*V - 50

 print(time, V, Temp)

 file1.write(str('{: 6.1f}'.format(time)) + " ")
 file1.write(str('{: 7.4f}'.format(Temp)) + " ")
 file1.write("\n")

 time += T

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 7 - July 12, 2024

The resulting measured temperature vs. time is as follows:

0 25 50 75 100 125 150 175
20

30

40

50

60

70

80

90

100

Time (seconds)

Degrees C Temperature of an Incandescent Light Bulb

Temperature of an incandescent light bulb, measured with a TMP36 temperature sensor

Note from this figure:

Incandescent light bulbs get a lot hotter than LED light bulbs

There is still quite a bit of noise in the data

Again, three long (half-meter) wires were used to connect the sensor to the Pico board. These separate

wires act as antennas, picking up stray RF signals. This noise could again be reduced by using shorter

wires, using twisted-pair wires, or using shielding.

DS18B20 Temperature Sensor

DS18B20 Temperature Sensor from Amazon

Yet another temperature sensor is the DS18B20. This temperature sensor has a built-in microprocessor

along with a one-wire digital inerface - making it fairly easy to interface to a microcontroller. With this

sensor, you can measure temperature

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 8 - July 12, 2024

Over a range of -55C to +125C

Using a power supply in the range of 2.5V to 5.5V

With a resolution of 0.0625C (12-bit)

In addition, each DS18B20 has a unique 64-bit serial code. This means you can connect multiple

DS18B20's together and read the temperature of each one separately.

In terms of hardware, just power, ground, and a signal from the Pi-Pico is needed:

Top

DQ VddGND

3.3V

3.3V

GP4Pi-Pico

4.7k

DS18B20

Single-wire interface for a DS18B20 thermometer

In terms of software, 1's and 0's are sent and received by the Pi-Pico by switching GP4 between output

(write) and input (read) with each bit lasting. To read a temperature,

The Pi-Pico first sends a Read Time Slot command (0x44), followed by

A Read Time Slot command

Wait 750ms for a 12-bit reading, then

Read temperature as a 16-bit sign-extended 2s compliment number.

Fortunately, the procedure for doing a temperature read has been placed into two libraries, ready for your

use (onewire and ds18x20). To read the temperature, the following code works as a bare-bones

temperature reading for a single sensor:

import onewire, ds18x20
from machine import Pin
from time import sleep, sleep_ms

ds_pin = Pin(4)
ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))

roms = ds_sensor.scan()
print('Found DS devices: ', roms)

while(1):

 ds_sensor.convert_temp()
 sleep_ms(750)

 Temp = ds_sensor.read_temp(roms[0])
 print(Temp)

Basic Python code for reading temperature

https://randomnerdstutorials.com/raspberry-pi-pico-ds18b20-micropython

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 9 - July 12, 2024

To set the sampling rate to 1.00 second, a timer interrupt can be used:

import onewire, ds18x20
from machine import Pin, Timer
from time import sleep, sleep_ms

ds_pin = Pin(4)
ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))

roms = ds_sensor.scan()
print('Found DS devices: ', roms)

flag = 1
T = 1

def tick(timer):
 global flag
 flag = 1

Time = Timer()
Time.init(freq=1/T, mode=Timer.PERIODIC, callback=tick)

sec = 0

while(sec < 1800):
 while(flag == 0):
 pass
 flag = 0
 sec += T

 ds_sensor.convert_temp()
 sleep_ms(750)
 Temp = ds_sensor.read_temp(roms[0])

 print(sec, Temp)

Timer interrupt sets the sampling rate to T seconds (one second here).

Note: The sleep_ms(750) command could be removed, making the code more efficient by swapping the

convert_temp() and read_temp() commands. This results in using the 1 second wait (interrupt) to provide

the 750+ms wait for the conversion to complete.

As a test, the temperature of a hot cup of water placed in a coffee cup is measured. Note

The recorded temperature is very clean (very little noise),

Initially, the temperature has some erratic behavior - probably due to the cup reaching equilibrium

After 100 seconds, the temperature decays to room temperature (Tamb) as

T = b∗ ⋅ exp(at) + Tamb

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 10 - July 12, 2024

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
20

30

40

50

60

70

80

Time (seconds)

Degrees C

T(ambient)

T(cup)

Measured temperature of a hot cup of water using a DS18B20 temperature sensor

Note that the noise level with a DS18B20 sensor is much less than the previous sensors. This is primarily

due to having very short leads: the temperature sensor and microcontroller are all on the same IC. Once

the temperature is converted to a digital signal, noise is no longer as much of a probem. This is one of

the reasons many sensors are going towards a digital interface.

Least Squares

Once you can measure temperature, there are several things you can do. One thing is to measure the

thermal time constant of your favorite coffee cup.

The thermal time constant can be found by modeling the temperature as

T = b∗ ⋅ eat + Tamb

or equivalently

T − Tamb = exp (at + b)

where {a, b} are constants. Taking the log of both sides results in an equation which is linear in t:

ln (T − Tamb) = at + b

This can be solved using least squares. Placing this in matrix form:













ln (T0 − Tamb)

ln (T1 − Tamb)

ln (T2 − Tamb)
.
..













=













t0 1

t1 1

t2 1
.
..

.

..


















a

b






or

Y = BA

The least squares solution for {a, b} is

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 11 - July 12, 2024

A = (BTB)
−1

BTY

In Matlab:

>> Data = [<paste data from previous code >];
>> t = Data(:,1);
>> T = Data(:,2);
>> Tamb = 24.616;
>> B = [t, t.^0];
>> A = inv(B'*B)*B'*log(T - Tamb)

 -3.1563e-004
 4.2630e+000

>> a = -1/A(1)

a = 3.1682e+003

>> b = A(2)

b = 4.2630e+000

>> plot(t,T,t,exp(-t/a+b) + Tamb);

The thermal time constant is 3168.2 seconds for this coffee cup.

0 200 400 600 800 1000 1200 1400 1600 1800
3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

Time (seconds)

ln(T - Tamb)

Measured

Linear Curve Fit

Measured & Curve Fitted Data for the temperature of a coffee cup

You could bypass Matlab and do all of the calculations using Python - but two problems arise:

With this method, there are a lot of computations to do every sample, and

The initial measurements had errors

To solve these problems,

Recursive least-squares will be used to simplify calculations (next section), and

A forgetting factor will be added to weight more recent data more heavily (the following section)

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 12 - July 12, 2024

Recursive Least Squares

Assume you are trying to find a linear curve fit

y = ax + b

for a set of data. With least squares, you place your data in matrix form (assume four data points for

now):













y0

y1

y2

y3













=













x0 1

x1 1

x2 1

x3 1


















a

b






The least squares solution is:






a

b




 =


















x0 x1 x2 x3

1 1 1 1


















x0 1

x1 1

x2 1

x3 1

























−1






x0 x1 x2 x3

1 1 1 1


















y0

y1

y2

y3













or






a

b




 =






Σ x i
2 Σ x i

Σ xi n






−1





Σ x iy i

Σ yi






In Python, you only need to keep track of four terms to create B and Y

B =





Σ xi
2 Σ xi

Σ x i n






Y =





Σ xiy i

Σ yi






or equivalently, in a recursive manner:

Bi = Bi−1 +





x i
2

x i

x i 1






Y i = Y i−1 +





x iy i

yi






Note that you don't need to keep track of the previous data: all you need are the net sums. From these,

you can compute the constants, {a, b}

A =





a

b




 = B−1Y

In Python, the main loop would look something like the following: (note: B is initially non-zero to avoid

an error in the matrix inverse routine).

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 13 - July 12, 2024

x = 0
Tamb = 19.38
B = [[0.01,0],[0,0.01]]
Y = [[0],[0]]
while(1):
 while(flag == 0):
 pass
 flag = 0

 ds_sensor.convert_temp()
 sleep_ms(750)
 Temp = ds_sensor.read_temp(roms[0])

 x += 1
 y = log(Temp - Tamb)

 matrix.add(B, [[x*x, x], [x, 1]])
 matrix.add(Y, [[x*y], [y]])
 Bi = matrix.inv(B)
 A = matrix.mult(Bi, Y)
 a = A[0][0]
 b = A[1][0]
 print(x, a, b)

Recursive least squares algorithm to find the slope (1 / thermal time constant)

The resulting linear curve fit is as follows:

0 200 400 600 800 1000 1200 1400 1600 1800
3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

Time (seconds)

ln(T - Tamb)

Raw Data

Least Squares Curve Fit

Least squares curve fit with a weighting of 1.000 for all of the data

Note the following:

The data does not follow a line. This suggests the system is actually nonlinear (Evaporation adds

additional heating at the start. Adding a lid would reduce this effect and make the system more

linear.)

As you collect more and more data, the slope changes, meaning the least-squares curve fit changes.

This shows up in the estimate of the thermal time constant: 1/a

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 14 - July 12, 2024

0 200 400 600 800 1000 1200 1400 1600 1800
2500

2750

3000

3250

3500

3750

4000

4250

4500

Time (seconds)

Time Constant (seconds)

Estimate of the thermal time constant (-1/a) with a weighting of 1.000 for all of the data

Recursive Least Squares with a Moving Window

One problem with the previous solution is that all of the data has an equal weighting. This can be good:

more data means a better estimate. This can also be bad: the weightings on the current data drops as

more and more data comes in. Likewise, if the system is time-varying, the changes will eventually be

ignored. To alleviate this problem, more recent data can be weighted more heavily than older data.

One way to use more recent data is to limit the window over which the least-squares takes place. For

example, if you only use the last 100 data points (last 100 seconds), you can see the changes in the slope /

time constant.

In code

Create a buffer which saves the last 100 data points

Recompute B and Y using these last 100 data points each sample,

From B and Y, recompute the least-squares curve fit each sample.

A circular stack saves time (so you don't have to constantly push data onto a stack each sample). This

gives a more efficient way to compute B and A

Bi = Bi−1 +





x i
2

x i

x i 1




 −






xi−100
2

xi−100

xi−100 1






Y i = Y i−1 +





x iy i

yi




 −






xi−100y i−100

y i−100






NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 15 - July 12, 2024

X = [0]*100
Y = [0]*100

Tamb = 19.38
B = [[0,0],[0,0]]
Y = [[0],[0]]
ptr = 0
time = 0
while(1):
 while(flag == 0):
 pass
 flag = 0
 ptr = (ptr + 1) % 100
 time += 1

 ds_sensor.convert_temp()
 sleep_ms(750)
 Temp = ds_sensor.read_temp(roms[0])

 x = X[ptr]
 Y = Y[ptr]

 matrix.subtract(B, [[x*x, x], [x, 1]])
 matrix.subtract(Y, [[x*y], [y]])

 X[ptr] = x = time
 Y[ptr] = y = log(Temp - Tamb)

 matrix.add(B, [[x*x, x], [x, 1]])
 matrix.add(Y, [[x*y], [y]])

 if(time >= 100):
 Bi = matrix.inv(B)
 A = matrix.mult(Bi, Y)
 a = A[0][0]
 b = A[1][0]
 print(x, a, b)

Python routine for using a moving window along with least squares curve fitting

0 200 400 600 800 1000 1200 1400 1600 1800
3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

Time (seconds)

ln(T - Tamb)

Weightings

1.00

0.00

Raw Data

Linear Curve Fit

In order to weight more recent data more heavily, only the last 100 data points can be used

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 16 - July 12, 2024

The resulting estimate of the time constant is somewhat better: it tracks the changes in the thermal time

constant. It's also somewhat worse: with less data you get more noise.

0 200 400 600 800 1000 1200 1400 1600 1800
2500

2750

3000

3250

3500

3750

4000

4250

4500

Time (seconds)

Time Constant (seconds)

Least squares estimate of the thermal time constant using only 100 seconds worth of data (moving window)

Recursive Least Squares with a Forgetting Factor

A similar scheme uses an exponential weighting factor:

 Weight(k) = αk 0 < α < 1

where 'k' is how many samples in the past the data was collected and alpha is a weighting factor. This

actually simplifies the code in that you no longer need a buffer storing all of the old data. All you need is

the resulting B and Y matrices:

The long way to compute B and Y are:

Bk = Σ
n=0

k

αk−n





xn
2 xn

xn 1






Yk = Σ
n=0

k

αk−n





xnyn

yn






A shorter, recursive way to compute B and Y are

Bk = αBk−1 +





xk
2

xk

xk 1






Yk = αYk−1 +





xkyk

yk






The constants are then

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 17 - July 12, 2024

A =





a

b




 = B−1Y

For example, making the forgetting factor 0.995 (old data is discarded by 0.5% per sample) results in

data which matches the more recent data (the weighting of current data no longer goes to zero):

0 200 400 600 800 1000 1200 1400 1600 1800
3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

Time (seconds)

ln(T - Tamb)

Weightings

1.00

Raw Data

Linear Curve Fit

Least squares curve fit with exponential weighting and a forgetting factor of 0.995

and the estimate of the thermal time constant is less noisy (due to using more data in the curve fit)

0 200 400 600 800 1000 1200 1400 1600 1800
2500

2750

3000

3250

3500

3750

4000

4250

4500

Time (seconds)

Time Constant (seconds)

Least squares estimate of the thermal time constant using exponential weighting and a forgetting factor of 0.995

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 18 - July 12, 2024

Summary:

Temperature is pretty easy to measure.

Thermistors and thermal diodes output an analog signal, which can be read by the 12-bit A/D on

the Pi-Pico. This along with some computations allow you to determine the temperature.

Digital temperature sensors allow you to read temperature without the need of an A/D conversion.

These also have the advantage of returning temperature rather than a raw signal which needs to be

converted to temperature.

Once you can measure temperature, you can do all sorts of things, like measure the thermal time constant

of a coffee cup as well as other things.

References

Pi-Pico and MicroPython

https://github.com/geeekpi/pico_breakboard_kit

https://micropython.org/download/RPI_PICO/

https://learn.pimoroni.com/article/getting-started-with-pico

https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Pi-Pico Breadboard Kit

https://wiki.52pi.com/index.php?title=EP-0172

Other

https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/

https://electrocredible.com/raspberry-pi-pico-external-interrupts-button-micropython/

https://peppe8o.com/adding-external-modules-to-micropython-with-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-raspberry-pi-pico/

https://randomnerdtutorials.com/projects-esp32-esp8266-micropython/

NDSU Temperature Sensors & Recursive Least Squares ECE 476

JSG - 19 - July 12, 2024

