
19. Angle Control of a DC Servo Motor

Introduction:

In the previous lecture, the speed of a DC motor was measured and controlled. This is useful if the motor

is driving something like a car. If instead you wanted to open and close a valve or control the position of

a robotic arm, the angle of the motor is what you want to control.

In this lecture, we look at

Measuring the angle of a DC motor using optical encoders

Controlling the angle using a P controller, and

Controlling the angle using a lead compensator (similar to a PD controller)

Motor Dynamics

From the previous lecture, the dynamics of the motor from voltage to speed is:

ω ≈

39.3

s+5

V

If you integrate speed, you get angle:

θ =

1
s

ω

The goal is thus to control the output of a system with dynamics of

θ ≈

39.3

s(s+5)

V

Measuring Motor Angle

Similar to the last lecture, an optical encoder is used to measure the motor angle. The output of a optical

encoder is a square wave in phase quadrature.

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 1 - May 29, 2024

ChA

ChB

A B+5 gnd

Optical encoders attached to the shaft of a motor output two square waves, each 90 degrees apart

By counting pulses per second, you get speed. By counting edges, you get angle.

There are several options for counting edges. The encoder used in this motor has 250 pulses per rotation

(for each channel). If you just count rising edges on channel A, the measured angle will drift: iIf the

motor is vibrating, moving forward and back slightly, counting rising edges alone will incorrectly tell you

that the motor is rotating. To fix this, you want to measure both rising and falling edges

If you measure both rising and falling edges of Channel A, you will get 500 counts per rotation

If you measure both rising and falling edges on both channels, you will get 1000 counts per

rotation

With 1000 counts per rotation, the conversion from counts to radians is

θ =

2π

1000

N

Code for measuring motor angle

pin1 = Pin(26,Pin.IN)

pin2 = Pin(27,Pin.IN,Pin.PULL_UP)

N1 = N2 = N12 = 0

def ChanA(pin1):

 global pin2

 global N1

 if(pin1.value() ^ pin2.value()):

 N1 += 1

 else:

 N1 -= 1

def ChanB(pin2):

 global pin1

 global N1

 if(pin1.value() ^ pin2.value()):

 N1 -= 1

 else:

 N1 += 1

pin1.irq(trigger=Pin.IRQ_FALLING | Pin.IRQ_RISING, handler=ChanA)

pin2.irq(trigger=Pin.IRQ_FALLING | Pin.IRQ_RISING, handler=ChanB)

Measuring the angle of a motor by counting rising and falling edges on both channel A and B.

This results in 1000 counts per rotation

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 2 - May 29, 2024

Hardware Connections

To drive the motor, an H-bridge is used - same as was done for speed control

+15V

0V

+5V

IN01

IN02

M+

M-GP18

GP19

GP26

GP27

Pi-Pico
H-Bridge

Optical Encoder

0V

3.3V

Channel A

Channel B

M

Hardware set-up for connecting a Pico to an H-bridge and a DC servo motor

A 15V, 2A power supply drives the output of the H-bridge (6V to 24V @ 1A)

GP18 and GP19 serve as the direction control:

GP18=1, GP19=0: 100% forward (+13.4V applied to the motor)

GP18=0, GP19=1: 100% reverse (-13.4V applied to the motor)

The power supply is somewhat arbitrary: whatever I could find lying around. With this motor, the

maximum current it should draw is determined by Ra when the motor is stationary (no back EMF):

Imax =

13.4V

26.4Ω

 = 507mA

As long as the power supply can output 507mA, it should work (it was actually rated at 2A).

Feedback Control

Typically, in order to control the speed of a motor, feedback is used. This allows you to specify the

desired speed (Ref) with the feedback system automatically figuring out what voltage you need to apply

to maintain speed (termed automatic control).

Ref
K(s)

V
G(s)

q

motorCompensator

e

angle

Feedback Configuration

The transfer function from the input (Ref) to angle (q) is then

θ = GKe

e = Ref − θ

or after simplifying

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 3 - May 29, 2024

θ =

GK

1+GK

Ref

The response varies based upon what type of controller you select for K(s)

P Control: K(s) = P=k

The simplest type of controller is a simple gain. This results in the open-loop system (GK) being

GK = (k)
39.5

s(s+5)

while the closed-loop system is

GK

1+GK

 =

39.5k

s(s+5)+39.5k

The roots of the closed-loop system are the solutions to

s(s + 5) + 39.5k = 0

If you plot the roots to this equation you get something called the root locus plot (covered in more detail

in Controls Systems - a different course)

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1
-j

0

j

j2

j3

j4

j5

j6

k = 0.1582

Roots of s(s+5) + 39.5k for 0 < k < infinity

The value of k that puts you at the breakaway point (s = -5) is the solution to

(s(s + 5) + 39.5k)s=−5 = 0

or

k =

−s(s+5)

39.5

s=−5

= 0.1582

With this controller, the voltage applied to the motor is

V = ke

V = 0.1582(R − θ)

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 4 - May 29, 2024

where R is the set point (reference input). The response for a step input of 50 radians is as follows.

P = 0.1582

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Time (seconds)

radians

Ref

Angle

Step Response with P Control

PD Control: K(s) = P + Ds

A second type of control which is popular is PD control. With this type of controller

K(s) = P + Ds

Normally, you don't want to use differentiation with a controller. In this case, it's OK since the output is

angle (q) and its derivative is speed . A PD control law just uses the angle (P term) and speed (D(ω)

term) to determine the voltage:

V = (P + Ds)e

V = P(R − θ) + Ds(R − θ)

or if the derivative of R is set to zero and replacing with speed (w)sθ

V = P(R − θ) + D(0 − ω)

Likewise, you don't actually use a differentiator in K(s).

Anyway, with a little algebra, K(s) can be rewritten as

K(s) = Ds +
P

D

K(s) = k(s + a)

With a PD controller, you can place a zero to cancel a pole. In this case, the pole you want to get rid of is

at s = -5 (this pole limit how fast the closed-loop system can become)

K(s) = k(s + 5)

resulting in the open-loop system being

GK = k(s + 5)
39.5

s(s+5)

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 5 - May 29, 2024

GK =

39.5k
s

and the closed-loop system being

GK

1+GK

 =

39.5k

s+39.5k

The roots of the closed-loop system are the solutions to

s + 39.5k = 0

which has the following root-locus plot

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1
-j

0

j

j2

j3

j4

j5

j6

k = 0.1266

Root Locus for s + 39.5k = 0

If you want to place the closed-loop poles at s = -5, then

(s + 39.5k)s=−5 = 0

k = 0.1266

and

K(s) = 0.1266(s + 5)

 = 0.1266s + 0.6329

 = Ds + P

The step response with this controller is then

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 6 - May 29, 2024

D = 0.1266, P = 5D

0 1 2 3 4 5 6 7 8 9 10
-10

0

10

20

30

40

50

60

Time (seconds)

radians

step response of PD control

Code for both P and PD control is as follows

Code for PD Control

E = Ref - Angle

sE = 0 - Speed

V = P*E + D*sE

Lead Compensator: K(s) = k (s+a)/(s+b)

A third type of controller is called a lead compensator.

 b > aK(s) = k
s+a

s+b

The idea behind this type of controller is the system has a slow pole which is causing problems (s + 5 in

this case). The zero allows you to cancel this pole and replace it with a faster pole - resulting in a faster

overall system. If you want to make the system twice as fast, then

K(s) = k
s+5

s+10

The open-loop system then becomes

GK =

39.5

s(s+5)

k(s+5)

s+10

GK =

39.5k

s(s+10)

and the closed-loop system becomes

GK

1+GK

 =

39.5k

s(s+10)+39.5k

The roots of the closed-loop system are the solution to

s(s + 10) + 39.5k = 0

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 7 - May 29, 2024

which has the following root-locus plot

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1
-j

0

j

j2

j3

j4

j5

j6

k = 0.6329

root locus plot for s(s+10) + 39.5k = 0

If you want to place the closed-loop poles at s = -5, then k is the solution to

(s(s + 10) + 39.5k)s=−5 = 0

k = 0.6329

or

K(s) = 0.6329
s+5

s+10

To implement K(s), there are two main options

Implement in the s-plane

Implement in the z-plane

s-Plane Implementation: In the s-plane, rewrite this as a proper fraction

K(s) = 0.6329
s+10−5

s+10

K(s) = 0.63291 −
5

s+10

and the voltage is

V(s) = K(s) ⋅ E(s)

V(s) = 0.63291 −
5

s+10

E(s)

Define a dummy-variable, X, to be the filtered error signal

X(s) =

5

s+10

E(s)

This can be implemented in code by cross-multiplying and solving for sX

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 8 - May 29, 2024

(s + 10)X = 5E

sX = −10X + 5E

In code:

Code for lead compensator

E = Ref - Angle

sX = -10*X + 5*E

integrate to find W

X = X + sW*dt

determine the voltage

V = 0.6329*(E - W)

s-plane implementation of a lead compensator

z-Plane Implementation: A second (and better) way to implement K(s) is to convert to the z-domain.

The conversion from the s-plane to the z-plane is

z = esT

where T is the sampling rate (50ms here). The zero and pole for the lead compensator then convert as

s = −5 z = esT = 0.7788

s = −10 z = esT = 0.6065

meaning

K(s) = 0.6329
s+5

s+10

is equivalent to

K(z) = k
z−0.7788

z−0.6065

To find k, match the DC gain

K(s = 0) = 0.3164

K(z = 1) = 0.3164 = k
z−0.7788

z−0.6065

k = 0.5629

or

K(z) = 0.5629
z−0.7788

z−0.6065

In code, this translates to

V = 0.5629
z−0.7788

z−0.6065

E

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 9 - May 29, 2024

Cross multiply

(z − 0.6065)V = 0.5629(z − 0.7788)E

Solve for the highest power of z

zV = 0.6065V + 0.5629(z − 0.7788)E

Convert back to time

V(k + 1) = 0.6065V(k) − 0.5629(E(k + 1) − 0.7788E(k))

Time shift by one (change of variable)

V(k) = 0.6065V(k − 1) − 0.5629(E(k) − 0.7788E(k − 1))

In code:

Code for lead compensator

E1 = E0

E0 = Ref - Angle

determine the voltage

V = 0.6065*V - 0.5629*(E0 - 0.7788*E1)

z-plane implementation of a lead compensator

The step response with a lead compensator is then as follows:

K(s) = k(s+5)/(s+10)

0 1 2 3 4 5 6 7 8 9 10
-10

0

10

20

30

40

50

60

Time (seconds)

radians

Ref

Angle

Figure - step response with a lead compensator

Note that the step response of the motor with a lead compensator is similar to what you get with a PD

compensator. An advantage of the lead compensator is you don't need to measure motor velocity. This

simplifies the code and removes some noise in the system.

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 10 - May 29, 2024

Path Planning and Feed-Forward Control

Note that in the previous step responses, there is a lag between the input and the output. This doesn't

have to be there. One way to reduce or eliminate this lag is to add a feed-forward term in the controller

(F(s)):

G(s)K(s)

F(s)

R E V q

compensator plant

feed-forward

Plant with feedback (K) and feedforward (F) inputs

The idea is this. The output of the plant is related to the input voltage as

θ =

39.5

s(s+5)

V

If you want the output to match the reference input (R), then the voltage should be

V =

s(s+5)

39.5

 θ

or

V =

s(s+5)

39.5

R = F(s) ⋅ R

Essentially, F(s) is an inverse of the plant: it specifies the voltage required for a given input, R. Ideally,

the feedforward term (the voltage you computed using F(s)) forces the output to track the set point

exactly. If there is some error or noise in the system, the feedback, K(s), will drive this error to zero.

One problem with feedforward control is the voltage is proportional to the first and second derivatives of

the set point, R

V =

1

39.5

 s2R +

5

39.5

 sR

This lead into the area termed path planning: how you define the path that the motor is to follow.

Previously, r(t) was a step input. This path doesn't work well with feed-forward control since the first

and second derivatives of a step function are infinite. Instead, we need a path from 0 radians to 50

radians which has finite first and second derivatives.

One option (there are others) is to define r(t) as a cosine-function. Let r(t) go from 0 to 50 radians in one

second as:

r(t) = 50
1−cos (πt)

2

 0 < t < 1

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 11 - May 29, 2024

If r(t) is to go from 50 radians to 0 radians in two seconds

r(t) = 50 − 50
1−cos(πt)

2

With this definition of the path from 0 to 50 radians and back, the first and second derivatives are finite:

0 1 2 3 4 5
-60

-40

-20

0

20

40

60

Time (seconds)

Radians

r(t)

r'(t)/2

r"(t)/4

r(t) along with its first and second derivatives

Once you know r(t) and its derivatives, you can compute the voltage required for this output

Vff =

s(s+5)

39.5

R

Vff =

1

39.5

 s2R +

5

39.5

 sR

0 1 2 3 4 5
-15

-10

-5

0

5

10

15

Time (seconds)

Volts

Vmax

Vmin

Voltage required to produce path r(t)

The feed-forward voltage tells you a couple of things:

The max and min voltage is less than the power supply limits (+/- 13.4V). This path should be

achievable.

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 12 - May 29, 2024

You could make the system slightly faster - there is still some room between the maximum voltage

and the power supply limit

Finally, results on the actual motor. In the figure below, a lead compensator is used to supply the voltage

to the motor without any feedforward terms:

V =

k(s+5)

s+10

E

No Feed-Forward Terms

0 1 2 3 4 5
-10

0

10

20

30

40

50

60

Time (seconds)

Radians

Ref

Angle

Tracking with Lead Compensation and No Feed-Forward Terms

If you add a term proportional to the derivative of the set point, r(t), tracking improves:

v(t) =

k(s+5)

s+10

E +

5s

39.5

R

Vff = R' * 5/39.5

0 1 2 3 4 5
-10

0

10

20

30

40

50

60

Time (seconds)

Radians

Ref

Angle

Tracking improves if you add a feed-forward term proportional to the derivative of r(t)

Finally, adding a term proportional to the second derivative results in almost perfect tracking:

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 13 - May 29, 2024

v(t) =

k(s+5)

s

E +

s(s+5)

39.5

R

Vff = R"/39.5 + R' * 5/39.5

0 1 2 3 4 5
-10

0

10

20

30

40

50

60

Time (seconds)

Radians

Ref

Angle

Tracking is almost perfect if you add terms proportional to r" and r'

Summary

Once you have

An optical encoder to measure a motor's angle and

An H-bridge allowing you to adjust the motor's input using PWM

you can control the angle of a motor using output feedback.

PD and lead compensators work better than P controllers

PD or lead compensation along with feed-forward control works even better.

In order to use feed-forward control, however, you need to define a reference signal which has finite fist

and second derivatives (path planning).

NDSU Angle Control of a DC Servo Motor ECE 476

JSG - 14 - May 29, 2024

