
ECE 476/676 - Test #1: Name __________________

1) Hardware: Binary Output A solenoid (electronic door-lock - modeled as a

100mH inductor and a 12 Ohm resistor) requires 2A at 24VDC to turn on. Design

a circuit so that a Pi-Pico can turn on and off this solenoid using one of its binary

outputs. Note that the output of a Pi-Pico is

Vout = 0V or 3.3V

Iout < 12mA

If you need to make assumptions about the hardware you are using, state the

assumptions you're making

Assume a NPN transistor (2SC144) with

β = 200

Vce(sat) = 0.36V

Ic(max) = 10A

To saturate the transistor, we need

βIb > Ic

Ib > 


2A

200

 = 10mA

Pick a number between 10mA and 12mA

(max a Pico can output). Let Ib = 12mA

(max current)

Rb = 


3.3V−0.7V

12mA


 = 216Ω

Let Rb = 220 Ohms (results in 11.8mA)

Add a flyback diode to save the transistor

when you turn off the solenoid. (clips Vc

at +24.7V)

There are other solutions as well...

+24V

100mH

12 Ohms

Solenoid2A

+24V

Solenoid

100mH

12

220

Rb

NPN

0.36V

0.7V3.3V

Pico

1.97A

(2A)

Ib = 11.8mA

Ic

c

b

e

2) Hardware: Analog Inputs Design a circuit to

allow a Pi-Pico to read an analog input which can

vary from -24V to +24V

-24V in produces 0V out

+24V in produces +3.3V out

Proportional inbeteen

y = 


3.3

48

 (x + 24) = 


3.3

48

 x + 1.65

Write this as

y = 0.06875(x) + 0.5(3.3V) + 0.43125(0V)

(make all the coefficients add to 1.000 for a weighted average).

Assume a nominal resistance of 10k. Then

Rx = 


10k

0.06875

 = 145.5k

R3.3v = 


10k

0.5

 = 20k

R0V = 


10k

0.43125

 = 23.19k

One solution is as follows (other solutions exist)

Picox

+24V .. -24V

145.45k

20k

23.19k

3.3V

y

Pi-Pico?

+24V

-24V

yx

+24V

-24V

+3.3V

0V

3) Fire Cheat: Write a Python program which controls the fire button for a video game

When you press GP15, a single shot is output on GP13 (beeper)

When you press GP14, three shots are output on GP13
- On for 100ms, off for 100ms (twice), then on as long as GP14 is pressed

Asume GP14 and GP15 are never pressed at the same time (don't care what happens in this case)

When the buttons are released, the beeper (GP13) turns off

GP15

(input)

GP14

(input)

GP15 Button Press

GP14 Button Press

GP13
(output)

One Shot Three Shots

100ms

Code: (start with GP14 and 15 are inputs with a pull-down resistor, GP13 is output)

from machine import Pin

from time import sleep_ms

B15 = Pin(15, Pin.IN, Pin.PULL_UP)

B14 = Pin(14, Pin.IN, Pin.PULL_UP)

Beeper = Pin(13, Pin.OUT)

while(1):

if(B15.value() == 0):

Beeper.value(1)

while(B15.value() == 0):

pass

Beeper.value(0)

if(B14.value() == 0):

for i in range(0,2):

Beeper.value(1)

sleep_ms(100)

Beeper.value(0)

sleep_ms(100)

Beeper.value(1)

while(B14.value() == 0):

pass

Beeper.value(0)

4) Morse Code: The flow chart for a program which outputs

Morse code 'dit' and 'dah' based upon the duration of a signal is

shown.

0V = button pressed (beeper on)

3.3V = button released (beeper off)

Write the corresponding Python program.

T0 T0 T0 T0T1 T1 T1 T1

dah dit dit dit

600ms 200 200 200 200 200600ms

T1-T0 T0-T1

time

3.3V

0V
GP15

from machine import Pin

from time import time_ms

B15 = Pin(15, Pin.IN, Pin.PULL_UP)

T0 = T1 = 0

while(1):

while(B15.value() == 1):

pass

T0 = time_ms()

if(T0-T1 > 400):

print(' ')

while(B15.value() == 0):

pass

T1 = time_ms()

if(T1 - T0 > 400):

print('dah')

else:

print('dit')

Note: With bouncing, you get some stray dit outputs. To prevent

that, change the last section of code to do nothing if T(on) < 10ms

if(T1 - T0 > 400):

print('dah')

elif(T1 - T0 > 10):

print('dit')

Start

GP15 = Input

T0 = T1 = 0

GP15 == 1?

record time (T0)

T0-T1 > 400ms?

print ' '
new letter

GP15 == 0?

record time (T1)

T1-T0 > 400ms?

output 'dah' output 'dit'

yes

no

falling edge

yes

new letter

no

yes

no

rising edge

yes no

Generally Useful Python Routines

Binary Input (Button Pressed)

from machine import Pin

Button = Pin(15, Pin.IN, Pin.PULL_UP)

x = Button.value()

Binary Output (Blinking Light)

from machine import Pin

LED = Pin(16, Pin.OUT)

LED.toggle()

LED.value(1)

LED.value(0)

Analog Input (A2D Read)

from machine import ADC

a2d0 = ADC(0)

x = a2d0.real_u16()

Analog Output (PWM Output)

from machine import Pin, PWM

Aout = Pin(16, Pin.OUT)

Aout = PWM(Pin(16))

Aout.freq(1000)

0% duty cycle

Aout.duty_u16(0x0000)

100% duty cycle

Aout.duty_u16(0xFFFF)

50us pulse

Aout.duty_ns(50_000)

Measure a pulse width in micro-seconds

from machine import Pin, time_pulse_us

X = Pin(19, Pin.IN, Pin.PULL_UP)

low = time_pulse_us(19, 0, 500_000)

high = time_pulse_us(19, 1, 500_000)

Pause 1.23 seconds

from time import sleep

sleep(1.23)

For Loops

for i in range(0,6):

 d1 = i

 for j in range(0,4):

 d2 = j

 y = d1 + d2

While Loops

t = 0

while(t < 5):

 t = t + 0.01

 print(t)

If - else if - else statements

if(x < 10):

 a = 1

elif(x < 20):

 a = 2

else:

 a = 3

Random Numbers

from random import randrange

x = randrange(10)

x = 0 to 9

Measure time since reset

from time import ticks_us

x0 = ticks_us()

