
ECE 476/676 - Homework #4
Timing, Analog I/O, Motors with Binary Inputs - Due Monday, February 10th

Motor Speed Control

1) Hardware: Connect your DC motor to your Pi-Pico. Verify that the Pico can make the motor spin

CW and CCW

Step 1) Check your motor works: Connect your DC motor to 3.3V and ground. The motor should spin

Step 2) Check your H-bridge works:

Connect the H-bridge to the motor along with 3.3V and ground.

Connects IN1 and IN2 directly to 3.3V and ground. You should see

IN1. IN2 Motor

0V 0V stopped (0V)

3.3V 0V CW (+3.3V)

0V 3.3V CCW (-3.3V)

Step 3) Connect the H-bridge to your Pi-Pico. You should be able to set the direction of the motor in

software

from machine import Pin
from time import sleep

IN1 = Pin(0, Pin.OUT)
IN2 = Pin(1, Pin.OUT)

IN1.value(1)
IN2.value(0)
print('CW')
sleep(2)
IN1.value(0)
IN2.value(0)
print('Stop')
sleep(2)
IN1.value(0)
IN2.value(1)
print('CCW')
sleep(2)
IN1.value(0)
IN2.value(0)

GP0

GP1

IN1

IN2

OUT1

OUT2

+3.3V

DRV8833 H-BridgePi-Pico

Motor

AN0

3.3V

joystick input

2) Software: Write a Python program which

Reads the analog input on AN0 (the joystick input) and

Drives a DC motor via an H-bridge

The analog input controls the PWM driving the motor

When the joystick is left in it's rest state (middle position), the PWM to the motor remains

constant

When the joystick is pushed forward (towards 3.3V), the motor speeds up (PWM slowly increases

to +100%)

When the joystick is pulled back (towards 0V), the motor slows down (PWM slowly decreases to

-100%)

from machine import ADC, PWM, Pin
from time import sleep

def Analog_Out(Pct):

 if(Pct < -100):

 Pct = -100

 if(Pct > 100):

 Pct = 100

 PW = int(abs(Pct) * 655.35)

 if(Pct > 0):

 IN1.duty_u16(PW)

 IN2.duty_u16(0)

 else:

 IN1.duty_u16(0)

 IN2.duty_u16(PW)

a2d1 = ADC(1)
k = 3.3 / 65520

IN1 = Pin(16, Pin.OUT)
IN1 = PWM(Pin(16))
IN1.freq(1000)
IN1.duty_u16(0)

IN2 = Pin(17, Pin.OUT)
IN2 = PWM(Pin(17))
IN2.freq(1000)
IN2.duty_u16(0)

center = a2d1.read_u16()
Pct = 0
dt = 0.1

while(1):
 a1 = a2d1.read_u16()
 V1 = k * (a1 - center)

 Pct += V1 * dt * 10

 Analog_Out(Pct)

 print(V1, Pct)
 sleep(dt)

3) Test and verify your Python program works

Adjusting the duty cycle and measuring the DC voltage at OUT1 - OUT2

PWM Votlage Motor

+100% +4.467V CW

+50% +3.989V CW

+25% +2.879V CW

0 0V stop

-25% -2.820V CCW

-50% -3.382V CCW

-100% -4.447V CCW

It's not quite linear (not sure why), but the voltage changes with the PWM input

4) Demo (in-person or with a video)

Looks better in the video

H-Bridge driven from GP0 - GP1 along with 5V input
Motor & Volt Meter connected to OUT1 - OUT2

Motor Angle Control

5) Hardware: Connect your digital servo motor to your Pi-Pico.

GP0

Pi-Pico

AN0

3.3V

joystick input
Digital

Servo

Motor

+5V

6) Software: Write a Python program which

Reads the analog input on AN0 (the joystick input) and

Drives a digital servo motor from 0% to 100% of it's angle output

from machine import ADC, PWM, Pin
from time import sleep

def Analog_Out(Pct):

 if(Pct < 0):

 Pct = 0

 if(Pct > 100):

 Pct = 100

 ns = int(500_000 + Pct*20_000)

 Control.duty_ns(ns)

a2d1 = ADC(1)
k = 3.3 / 65520

Control = Pin(16, Pin.OUT)
Control = PWM(Pin(16))
Control.freq(50)

center = a2d1.read_u16()
Pct = 50
dt = 0.1

while(1):
 a1 = a2d1.read_u16()
 V1 = k * (a1 - center)

 Pct += V1 * dt * 10

 Analog_Out(Pct)

 print(V1, Pct)
 sleep(dt)

7) Test and verify your Python program works

Pushing the pot up moves the motor CW

Pulling the pot back moves the motor CCW

Center holds the motor stationary (slow drift)

Duty Cycle Angle

0% 0 degres

35% 90 degrees

66% 180 degrees

100% 270 degrees

8) Demo (in-person or with a video)

Pico connected to a digital servo motor (alt-azimuth assembly - $50 version of what's in your kit)

