ECE 476/676 - Test #3: Name

1) NeoPixel: Write a python program to control a stoplight. Assume the Pico is
treated like an I2C device where a register (X) controls its operation.

np[2]
(50,0,0)

X[0] = operating mode
- 0: Normal (green — yellow —red—repeat)
- 1: Red
« X[1] = green time in ms
X[2] = yellow time in ms
X][3] =red time in ms

np[1]
(50,50,0)

np[0]
(0,50,0)

@ 0@

For example, if you want normal operation with the times being 5000ms (g), 1000ms
(y), 6000ms (r), X would be initialized as

from machine import Pin, bitstream
X = [0, 5000, 1000, 6000]

Write a python program which drives a stoplight made up of three NeoPixels based upon the value of X.
You're free to use any method to drive the NeoPixel (bitstream, neopixel library, PIO state machines, etc)

2) GPS messages look like the following. The altitude shows up under a GPGGA message.

'$GPGGA, 205246.00,4649.55240,N,09652.11367,W,1,07,1.17,283.7,M,-27.5,M, ,*69\r\n"
'$GPGSA, A, 3,23,18,10,27,15,32,24,,,,,,3.59,1.17,3.39*0C\r\n"
'$GPGSV,2,1,08,08,19,311,09,10,52,288,24,15,28,055,21,18,47,147,25*78\r\n"
'$GPGSV, 2,2,08,23,77,015,19,24,39,100,21,27,32,277,1

'$GPRMC, 205247.00,A,4649.55258,N,09652.11395,W, 0.306,,140724,,,A*62\r\n"
'$GPVTG,,T,,M,0.306,N,0.567,K,A*22\r\n"

' $GPGGA, 205247.00,4649.55258,N,09652.11395,W,1,07,1.14,284.1,M,-27.5,M, , *6E\r\n"'
'$GPGSA, A, 3,23,18,10,27,15,32,24,,,,,,2.49,1.14,2.22*%04\r\n"
'$GPGSV,2,1,08,08,19,311,08,10,52,288,25,15,28,055,22,18,47,147,26*78\r\n"
'$GPGSV, 2,2,08,23,77,015,19,24,39,100,21,27,32,277,1

'$GPRMC, 205248.00,A,4649.55297,N,09652.11403,W,0.312,,140724,,,A*63\r\n"
'$GPVTG,,T,,M,0.312,N,0.578,K,A*29\r\n"

' $GPGGA, 205248.00,4649.55297,N,09652.11403,W,1,07,1.14,284.5,M,-27.5,M, , *6E\r\n"'
'$GPGSA, A, 3,23,18,10,27,15,32,24,,,,,,2.49,1.14,2.22*%04\r\n"

Write a Python subroutine which
- Is passed a single GPS message (X) as a text string, and
- GPS messages start with a $ and end with a \r\n
« Returns your altitude as a text string

- The numbers shown in red if it's a GPGGA message
- Return an empty string if it's not a GPGGA message

def GPS_Problem(X) :

3) BlueTooth: Assume you have received a Bluetooth message with the format of a text string
msg = 'aa,bbbbb.bb/r/n'
where
aa is a number of uncertain length (0 to 99)
« bbbbb.bb is a number of uncertain length (0 to 9999.999)

a and b are spearated with a comma
the message is terminated with a carriage-return, line-feed (/r/n)

Write a python subroutine which

Is passed a Bluetooth message like the one above in variable msg, and
Stores the number b
At memory location a

For example, if msg = '12,345.6/r/n', then the number 345.6 would be stored in X[12]

note: This makes the Pico behave like an I2C device where you interract with it by reading and writing to
register locations.

X = [0]*100
def BlueTooth_Problem(msg) :
global X

write the rest of the code

4) WiFi: Assume a client is attached to your Pi-Pico set up as a WiFi host. Each time the client clicks on
a Submit button for a text tag, two messages are sent. For example, if the messages are
NO=Hello+World and N1=3.14159, the WiFi messages are:

Message #1 (text string)

x = 'GET /action_page.php?NO=Hello+World&N1=3.14159 HTTP/1.1\r\nHost: 192.168.4.1
\r\nConnection: keep-alive\r\nUpgrade—-Insecure—-Requests: 1\r\nUser-Agent: Mozilla
/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/
131.0.0.08afari/537.36\r\nAccept:\r\ntext/html, application/xhtml+xml, applicatio
n/xml; g=0.9, image/avif, image/webp, image/apng, */*; g=0.8, application/signed-e
xchange; v=b3; g=0.7\r\nReferer: http://192.168.4.1/\r\nAccept-Encoding: gzip,defl
ate\r\nAccept-Language: en-US,en;g=0.9\r\n'

Message #2 (text string)

x = 'GET /favicon.ico HTTP/1.1\r\nHost: 192.168.4.1\r\nConnection: keep-alive\r\n
User—-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)AppleWebKit/537.36 (KHTML,1li
ke Gecko) Chrome/131.0.0.0 Safari/537.36\r\nAccept:image/avif, image/webp, image/ap
ng, image/svg+xml, image/*, */*;g=0.8\r\nReferer: http://192.168.4.1/action_page.php
?NO=Hello+World&N1=3.14159\r\nAccept-Encoding: gzip, deflate\r\nAccept-Language:e
n-US,en;g=0.9\r\n'

Write a python routine which

« Receives a message (x) as a text string (Message #1 or Message #2)
- If message #1 is received, it returns the number 1 along with the string sent

[1, 'NO=Hello+World&N1=3.14159"] for the above message #1
- If message #2 is received, it returns the number 2 along with an empty string
(2, "'l for the above message #2

- Each message is a text string which can vary in content and length

def WiFi_Problem(x) :

