
ECE 476/676 - Test #2: Name __________________

1) Edge Interrupts: In order to measure your reflex time, a device turns on a light (detected on GP0)

and then waits until you press a button (detected on GP1).

Write the interrupt initialization and interrupt service routine which:

Triggers an edge interrupt on the rising edge of GP0
- When this interrupt happens, it records the time with a resolution of 1ms

Triggers an edge interrupt on the falling edge of GP1
- When this interrupt happens, it records the time with a resolution of 1ms

- It also sends the time difference to the display with a print() statement

GP0 (input - light)

GP1 (input - button) Rising edge interrupt

record the time

falling edge interrupt

record the time

display the time delay

button press

light on

Edge Interrupt for GP0
rising edge interrupt - record the time

Edge interrupt for GP1
falling-sdge interrupt - record time & display time delay

Initialization Initialization

Interrupt Service Routine Interrupt Service Routine

Problem #1 Code:

Notes:

Global variables are needed to pass data between routines

Two separate interrupt service routines are needed (light and button)

Light interrupt is set up as a rising edge interrupt

Button interrupt is set up as a falling edge interrupt

from machine import Pin
from time import ticks_ms, sleep

Light_Time = Button_Time = dT = 0

Light = Pin(0, Pin.IN, Pin.PULL_UP)
Button = Pin(1, Pin.IN, Pin.PULL_UP)

def Light_On(Light):
 global Light_Time
 Light_Time = ticks_ms()

def Button_Press(Button):
 global Button_Time, dT
 Button_Time = ticks_ms()
 dT = Button_Time - Light_Time

Light.irq(trigger=Pin.IRQ_RISING, handler=Light_On)
Button.irq(trigger=Pin.IRQ_FALLING, handler=Button_Press)

while (1):
 print(Light_Time, Button_Time, dT)
 sleep(0.2)

Comments:

Interrupt #1 is in red
- rising edge on GP0

- records the time of the rising edge

Interrupt #2 is in blue
- falling edge on GP1

- records the time and the time difference

Global variables are needed to pass data
- main routine

- interrupt #1

- interrupt #2

2) Timer Interrupts: Write a python program which uses timer interrupts to

play a 220Hz note on GP0 (toggle @ 440Hz with a periodic interrupt)

for 750ms (one-shot interrupt turns off the sound)

Use a global variable, PLAY, to set the duration of the note

PLAY

GP0 (output)

periodic interrupts (toggle GP0 @ 440Hz) one-shot interrupt

750ms

Problem 2 Code
from machine import Pin, Timer
from time import sleep

t0 = Timer()
t1 = Timer()
PLAY = 0

spkr = Pin(0, Pin.OUT)

def Play_220Hz(t0):
 global PLAY
 if(PLAY):
 spkr.toggle()
 else:
 spkr.value(0)

def Play_Off(t1):
 global PLAY
 PLAY = 0

t0.init(freq=440, mode=Timer.PERIODIC, callback=Play_220Hz)

while(1):
 PLAY = 1

 t1.init(period=750, mode=Timer.ONE_SHOT, callback=Play_Off)
 sleep(2)

Comment

interrupt t0 is in blue
- called at 440Hz.

- If PLAY==1, GP0 is toggled

interrupt t1 is in red
- called 750ms after it is turned on (one shot in the main routine)

- clears PLAY to turn off the sound

3) Analog Sensors: Assume a temperature sensor tells you the temperature in degrees C

variable degC, type = float

Write a Python subroutine which sets the pulse width on pin GP16 based upon the temperature:

Temperature
degC

<20C 20C to 40C >40C

Duty Cycle 0% 0% to 100% (proportional) 100%

Problem #3 Code
from machine import Pin, PWM
from time import sleep

Aout = Pin(16, Pin.OUT)
Aout = PWM(Pin(16))
Aout.freq(1000)

def Analog(degC):
 if(degC < 20):
 duty = 0
 elif(degC < 40):
 duty = 5*(degC - 20)
 else:
 duty = 100
 Aout.duty_u16(int(duty*65535/100))
 return(duty)

for T in range(0,50,5):
 PW = Analog(T)
 print(T, PW)
 sleep(0.1)

 degC PW
0 0
5 0
10 0
15 0
20 0
25 25
30 50
35 75
40 100
45 100
50 100

Comments

only the part in blue is needed (the subroutine)
- Without the rest of the code, it won't run

you could also set the pulse width in nano-seconds
- 0ns = 0%

- 1_000_000 ns is 100% (assuming 1kHz)

4) Annoy-A-Tron (Exponential Distribution)

Write a Python program which turns on the beeper (GP13=1) for 100ms every x seconds.

Let x be a random number from 0 to infinity with an exponential distribution which has a mean of 10

seconds

cdf(x) = 1 − exp (−x/10)

where p is the probability in the range of (0,1)x = −10 ⋅ ln (1 − p)

Problem #4 Code

from machine import Pin
from random import random
from time import sleep
from math import log

Beeper = Pin(13, Pin.OUT)
Beeper.value(0)

while(1):

 p = random()
 x = -10*log(1-p)

 sleep(x)
 print('Beep', p, x)

 Beeper.value(1)
 sleep(0.1)
 Beeper.value(0)

Comments

you need to set the beeper (GP16) to be an output for it to work

you need a while(1): loop to keep going and going

you need to compute a new x every time it beeps

sleep(0.1) is one option for 100ms
- timer interrupts could be used

- that's a different problem on the test

Generally Useful Python Routines

Binary Input (Button Pressed)

from machine import Pin

Button = Pin(15, Pin.IN, Pin.PULL_UP)
x = Button.value()

Binary Output (Blinking Light)

from machine import Pin

LED = Pin(16, Pin.OUT)
LED.toggle()
LED.value(1)
LED.value(0)

Analog Input (A2D Read)

from machine import ADC

a2d0 = ADC(0)
x = a2d0.real_u16()

Analog Output (PWM Output)

from machine import Pin, PWM

Aout = Pin(16, Pin.OUT)
Aout = PWM(Pin(16))
Aout.freq(1000)

0% duty cycle
Aout.duty_u16(0x0000)

100% duty cycle
Aout.duty_u16(0xFFFF)

50us pulse
Aout.duty_ns(50_000)

Measure a pulse width in milli-seconds

from machine import Pin, time_pulse_ms

X = Pin(19, Pin.IN, Pin.PULL_UP)
low = time_pulse_ms(19, 0, 500_000)
high = time_pulse_ms(19, 1, 500_000)

Pause 1.23 seconds

from time import sleep

sleep(1.23)

For Loops

for i in range(0,6):
 d1 = i
 for j in range(0,4):
 d2 = j
 y = d1 + d2

While Loops

t = 0
while(t < 5):
 t = t + 0.01
 print(t)

If - else if - else statements

if(x < 10):
 a = 1
elif(x < 20):
 a = 2
else:
 a = 3

Random Numbers

from random import random

p = random()
x = 0.000 to 0.999

Measure time since reset

from time import ticks_ms

x0 = ticks_ms()

Interrupts

Edge Interrupt: Up Counter

from machine import Pin

interrupt_flag=0
N = 0

pin = Pin(15,Pin.IN,Pin.PULL_UP)
def IntServe(pin):
 global interrupt_flag
 global N
 interrupt_flag=1
 N = N + 1

pin.irq(trigger=Pin.IRQ_FALLING,
handler=IntServe)

while(1):
 if(interrupt_flag):
 print("N = ", N)
 interrupt_flag=0

Timer Interrupt: periodic @ 1 sec

from machine import Pin, Timer
from time import sleep

led = Pin(17, Pin.OUT)
tim = Timer()
N = 0

def tic(timer):
 global N
 N += 1

tim.init(freq=1, mode=Timer.PERIODIC,
callback=tic)

while(1):
 print(N)
 sleep(0.1)

Timer Interrupt: (one-shot - 5 sec delay)

from machine import Pin, Timer

tim = Timer()

pin1 = Pin(15,Pin.IN,Pin.PULL_UP)
Fan = Pin(17,Pin.OUT)

def FanOff(pin1):
 Fan.value(0)

while(1):
 while(pin1.value() == 0):
 Fan.value(1)
 tim.init(freq=1/5, mode=Time.ONE_SHOT,
 callback=FanOff)
 while(pin1.value() == 1):
 pass

