
ECE 476/676 - Test #1: Name __________________

1) Hardware: Binary Output A 100 Watt LED requires the following

Vf = 34V
Id = 3000mA
9000 Lumens @ 3A

Design a circuit so that a Pi-Pico can turn on and off this LED with one of its binary outputs at 3 Amps.
Note that the output of a Pi-Pico is

Von = 3.3V, Iout < 12mA

If you need to make assumptions about the hardware you are using, state the assumptions you're making

Option #1: Use a BJT transistor capable of 3A with a gain of 300

Assume a 50V power supply (anything larger than 34.2 Volts works)

Rc = 


50V−34V−0.2V

3A


 = 5.27Ω

To saturate the transistor

Ib >
Ic

β = 3A

300
= 10mA

Let Ib = 12mA (max Pico can output)

Rb = 


3.3V−0.7V

12mA


 = 216Ω

50V

Rc

LED

50W

6144

Rb

NPN

3A

Pico

Option 2: Use a MOSFET capable of 3A and 50V.

Example: FDP5800 (not necessary to find an actual MOSFET)

Rds = 0.006 Ohm @ Vgs = 10V, Ids = 80A
Vgs(th) = 2.5V (max)
$2.90 each

Rd = 


50V−24V

2A

 = 2Ω

(actually 1.994 Ohms due to Rds = 0.006 Ohms)

Use a comparitor to convert the Pico output from (0V, 3.3V) to (0V, 10V)

Pico

3.3V = on

0V = 0ff

10V

1.5V

n-channel

MOSFET

LED

40V

3A Rd = 2 Ohms

10V = on

0V = off

Vgs

g

d

s

2) Hardware: Analog Inputs Design a circuit which converts x (a -5V to +10V analog signal) to y (a 0V
to +3.3V analog signal)

-5V in produces 0V out
+10V in produces +3.3V out
Proportional inbeteen

correct equationy = 


3.3V

15V


 x + 

3.3⋅5

15

 = 0.22x + 1.1

given equationy = 0.22x + 0.11

Option 1: Use three resistors as a weighted average

Rewrite this as

y = ax + b(3.3V) + c(0V)

such that

a + b + c = 1

y = 0.22x + 0.0333(3.3V) + 0.7467(0V)

Assume a base resistance of 1k Ohm

Ra = 1k

0.22
= 4.54k

Rb = 1k

0.0333
= 30k

Rc = 1k

0.7467
= 1.34k

3.3V

x y

1.34k

30k

4.54k

Rb

Rc

Ra

Using the correct equations

y = 0.22x + 1.1

Rewrite as

y = 0.22x + 0.333(3.3V) + 0.4467(0V)

Let R0 = 1k

Ra = 1k

0.22
= 4545

Rb = 1k

0.3333
= 3k

Rc = 1k

0.4467
= 2238

3.3V

x y

1.34k

30k

4.54k

Rb

Rc

Ra
3k

2238

Option 2: Use an instrumentation amplifier

y = 


R1

R2


 (Va − Vb)

Rewrite the output in this form

y = 0.22x + 1.1

y = 0.22(x + 5)

y = 0.22(x − (−5))

22k100k

22k100k

y

x

-0.5V-5V

Other solutions exist

3) Python Subroutines: Write a Python subroutine which

Is passed the temperature in degrees C, and

Returns the voltage output for the following circuit.

Assume the thermistor has the temperature - resistance relationship of

R = 3000 ⋅ exp 
4000

T+273
− 4000

298

Ω

and a voltage divider with

Ra = 


1

R
+ 1

10k




−1

Rb = Ra + 5000

V = 


Rb

Rb+3k


 ⋅ 3.3V

Start of subroutine

def Voltage(T):

 e = 2.7182818

 R = 3000 * e **(4000 / (T+273) - 4000/298)

 Ra = 1 / (1/R + 1/10000)

 Rb = Ra + 5000

 V = Rb / (Rb + 3000) * 3.3

 return(V)

+3.3V

3k

R 10k

5k

V

4) Python Programming Assume the hardware is set up so that a Pi-Pico can drive a 100W LED:

GP16 = 1 (3.3V): LED is on (9000 Lumens)

GP16 = 0 (0V): LED is off (0 Lumens)

Write a Python program adjusts the light's brightness based upon which button is pressed:

GP0: Light Off

GP1: Light On (1%)
GP2: Light On (10%)
GP3: Light On (100%)

Use whatever method you like to vary the light's brightness

from machine import Pin, PWM
from time import sleep

B0 = Pin(0, Pin.IN, Pin.PULL_UP)
B1 = Pin(1, Pin.IN, Pin.PULL_UP)
B2 = Pin(2, Pin.IN, Pin.PULL_UP)
B3 = Pin(3, Pin.IN, Pin.PULL_UP)

Aout = Pin(16, Pin.OUT)
Aout = PWM(Pin(16))
Aout.freq(1000)
Aout.duty_u16(0x0000)

while(1):
 if(B0.value() == 0):
 Aout.duty_u16(0)

 elif(B1.value() == 0):
 Aout.duty_u16(655)

 elif(B2.value() == 0):
 Aout.duty_u16(6555)

 elif(B3.value() == 0):
 Aout.duty_u16(65535)

 sleep(0.1)

Sidelight: The requirements didn't specify what happens if no button is pressed.

Some solutions turned off the light
Some set the brightness to 50%
Some set the brightness to 100%

Some left it alone (last button pressed)

5) Python Programming: A Pico is to control a mechanism which gives out food.

When GP14 is pressed, two pieces of food are given out (Food = 2)

When GP15 is pressed, three pieces of food are given out (Food = 3).
However, 10% of the time the mechanism will then pause for one second, then take away two pieces
(resulting in Food = 1)

The program then waits for the buttons to be release and it starts over

Write the corresponding Python program

from machine import Pin
from time import sleep
from random import randrange

B14 = Pin(14, Pin.IN, Pin.PULL_UP)
B15 = Pin(15, Pin.IN, Pin.PULL_UP)

while(1):

 while((B14.value() == 0) and (B15.value() == 0)):
 pass

 if(B14.value() == 0):
 Food = 2
 print('Food = ',Food)
 else():
 Food = 3
 print('Food = ',Food)
 a = randrange(10)
 if(a == 0):
 sleep(1)
 Food = 1
 print('Food = ',Food)

 while(not((B14.value() == 0) and (B15.value() == 0)):
 pass

note: You can use DeMorgan's law and also write the last statement as

 while((B14.value() == 1) or (B15.value() == 1)):
 pass

Start

GP14=GP15=0?

GP14/15 = Input

Pull-Up R's

GP14=0?

Food = 2

Display Food

Food = 3

Display Food

p = 10%?

Pause 1 second

Take away 2 food

Display Food

A = 0..10

GP14=GP15=0?
noyes

yes

no

10% chance

90% chance

yes

no

yes no

Generally Useful Python Routines

Binary Input (Button Pressed)

from machine import Pin

Button = Pin(15, Pin.IN, Pin.PULL_UP)
x = Button.value()

Binary Output (Blinking Light)

from machine import Pin

LED = Pin(16, Pin.OUT)
LED.toggle()
LED.value(1)
LED.value(0)

Analog Input (A2D Read)

from machine import ADC

a2d0 = ADC(0)
x = a2d0.real_u16()

Analog Output (PWM Output)

from machine import Pin, PWM

Aout = Pin(16, Pin.OUT)
Aout = PWM(Pin(16))
Aout.freq(1000)

0% duty cycle
Aout.duty_u16(0x0000)

100% duty cycle
Aout.duty_u16(0xFFFF)

50us pulse
Aout.duty_ns(50_000)

Measure a pulse width in micro-seconds

from machine import Pin, time_pulse_us

X = Pin(19, Pin.IN, Pin.PULL_UP)
low = time_pulse_us(19, 0, 500_000)
high = time_pulse_us(19, 1, 500_000)

Pause 1.23 seconds

from time import sleep

sleep(1.23)

For Loops

for i in range(0,6):
 d1 = i
 for j in range(0,4):
 d2 = j
 y = d1 + d2

While Loops

t = 0
while(t < 5):
 t = t + 0.01
 print(t)

If - else if - else statements

if(x < 10):
 a = 1
elif(x < 20):
 a = 2
else:
 a = 3

Random Numbers

from random import randrange

x = randrange(10)
x = 0 to 9

Measure time since reset

from time import ticks_us

x0 = ticks_us()

