
ECE 476/676 - Final Exam: Name __________________

1) Python Programming - The following flow chart counts the

number of times button on GP15 is pressed:

N = the number of button presses

When N matches your birth month (1..12), the LED on GP16

turn on

When N matches your birth day (1..31), the LED on GP17 turn

on

Write the corresponding Python code

from machine import Pin

Button = Pin(15, Pin.IN, Pin.PULL_UP)

LED1 = Pin(16, Pin.OUT)

LED2 = Pin(17, Pin.OUT)

N = 0

while(1):

 while(Button.value() == 0):

 pass

 while(Button.value() == 1):

 pass

 N += 1;

 if(N == 5): # birth month

 LED1.value(1)

 else:

 LED1.value(0)

 if(N == 14): # birth date

 LED2.value(1)

 else:

 LED2.vaue(0)

Start

Button = GP15

LED1 = GP16

LED2 = GP17

Button

N = Day?

Increment N

N = Mo?

Turn on LED1 Turn off LED1

Turn on LED2 Turn off LED2

yes

no

no

yes

yes no

yes no

Mo = birth

month

Day = birth

day

note:
Pressed?

Button
Pressed?

2) Python Programming - Subroutines.

Write a Python subroutine which draws a solid

red triangle on the graphics display with

vertices at

(x0, y0) = (250, 100)

(x1, y1) = (100, 300)

(x2, y2) = (400, 300)

def Draw_Red_Triangle():

 red = LCD.RGB(200,0,0)

 for i in range(0, 201):

 y = i + 100

 xmin = 250 - (150/200)*i
 xmax = 250 + (150/200)*i

 LCD.Line(xmin,y,xmax,y,red)

note:

There are many other solutions

This draws horizontal lines since the display displays vertical or horizontal fines a lot faster than

diagonal lines

(250,100)

(100,300) (400,300)

Solid Red Triangle

LCD Graphics Display(0,0)

(479,319)

3) Sensors: The following Python program reads the temperature from a DS18B20 sensor.

Modify this code so that

It reads the temperature every 1.00 second

It keeps track of
- The number of readings (n),

- The sum of temperatures (m1), and

- The sum of temperature squared (m2)

m1 = Σ (T)

m2 = Σ (T2)

It then computes the mean, variance, and 90 percent confidence interval

x = mean =
1
n ⋅ m1

v = variance = 
1

n−1



m2 −

1
n ⋅ m1

2 


xmax, xmin = 90% confidence interval = mean ±1.64 variance
n

import machine, onewire, ds18x20, time

ds_pin = machine.Pin(4)

ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))

roms = ds_sensor.scan()

n = m1 = m2 = 0

while(1):

 ds_sensor.convert_temp()

 time.sleep_ms(750)

 T = ds_sensor.read_temp(rom[0])

 n += 1

 m1 += T

 m2 += T**2

 x = m1/n

 if(n>1):
 v = (m2 - (m1**2)/n) / (n-1)
 else:
 v = 999

 Xmax = x + 1.64 * ((v / n) ** 0.5)
 Xmin = x - 1.64 * ((v / n) ** 0.5)

4) Interrupts & Stoplight: Write a Python program which uses interrupts to drive a stoplight.

Edge Interrupt: Each time you press the button GP15 (falling edge interrupt),

it counts mod 3.
- Mode = 0 >> 1 >> 2 >> 3 >> repeat

Timer Interrupt: Interrupt every 1.00 second

The variable Mode sets the operation:

Mode = 0: set the color as green for 5 seconds, yellow for 1 second, red for 6

seconds, repeat

Mode = 1: set the color to red

Mode = 2: flashing red (red for 1 second, off for one second, repeat)

Mode = 3: flashing yellow (yellow for 1 second, off for one second, repeat)

The main routine to set the stoplight to red is as follows (from test #3). The main

loop does nothing (all work is done inside the interrupts)

Comments

Code is on the next page

Many other solutions exist

Edge Interrupts: (show in red)

Edge interrupts detect the falling nedge of button 15

This counts mod 4

Timer Interrrupts (show in blue)

Called every 1000ms (1 second)

If Mode == 0, it goes through the green - yellow - red sequence

If Mode == 1, it turns on red

If Mode == 2, it alternates between red and off

If Mode == 3, it alternates between yellow and off

Main Routine

Does nothing

Interrupts do all of the work

np[2]

(50,0,0)

np[1]

(50,50,0)

np[0]

(0,50,0)

from machine import Pin, bitstream

timing = [300, 900, 700, 500]

np = Pin(12, Pin.OUT)

red = bytearray([0,0,0,0,0,0,0,50,0])

yellow = bytearray([0,0,0,50,50,0,0,0,0])

green = bytearray([50,0,0,0,0,0,0,0,0])

off = bytearray([0,0,0,0,0,0,0,0,0])

bitstream(np, 0, timing, red)

pin = Pin(15, Pin.IN, Pin.PULL_UP)
Mode = N = 0

def Button_Press(pin):
 global Mode
 Mode = (Mode + 1) % 4

pin.irq(trigger=Pin.IRQ_FALLING, handler=Button_Press)

tim = Timer()

def tic(timer)
 global N, Mode

 if(Mode == 0):
 N = (N + 1)% 15
 if(N < 5):
 bitstream(np, 0, timing, green)
 elif(N < 6):
 bitstream(np, 0, timing, yellow)
 else:
 bitstream(np, 0, timing, red)

 if(Mode == 1):
 bitsream(np, 0, timing, red)

 if(Mode == 2):
 N = (N + 1) % 2;
 if(N==0):
 bitstream(np, 0, timing, off)
 else:
 bitstream(np, 0, timing,, red)

 if(Mode == 3):
 N = (N + 1) % 2;
 if(N==0):
 bitstream(np, 0, timing, off)
 else:
 bitstream(np, 0, timing,, yellow)

tim.init(period = 1000, mode=Timer.PERIODIC, callback=tic)

while(1):

 pass

