
Variable Structures Systems (VSS)
Variable Structures Systems is another type of controller which uses full-state feedback to make a system
behave a desired way. The result is similar to pole placement: the resulting control law is

U    signKrR KxX

where is a constant determining the maximum and minimum of U. A slight variation is saturating
control:

U limit, KrR KxX,

The problem with each of these is the control law is nonlinear. To prove stability, we need something
other that eigenvalues since eigenvalues do not apply for nonlinear systems.

Unfortunately, there are only three proofs for stability for nonlinear systems:

Hyperstability,
H-infinity, and
Lyapunov.

For the first two, consider the following feedback system:

R E
G(s)

Y

If the phase shift of G(s) is 180 degrees, you have positive feedback. If the gain of G(s) is 'a' at this
frequency, the closed-loop gain is:

gain = a  a2  a3  a4  ...

This is only finite when a < 1.

In order for the closed-loop system to be stable, the gain must be less than one when the phase shift
is 10 degrees.

This leads to two ways to prove closed-loop stability:

H-Infinity: If you can prove the gain of G(s) is always less than one, the closed-loop system must be
stable. This is useful when you want to determine how much a system can be perturbed and remain
stable. Ideally, the perturbations are zero (less than one). As long as the perturbation are small enough,
stability won't be affected (the loop gain is less than one).

Hyperstability: If the phase shift of G(s) never reaches 180 degrees, the closed-loop system must be
stable. This is used in one form of model-reference adaptive control.

NDSU VSS ECE 463

1 April 21, 2017

Lyapunov Stability: Define an energy function which is positive definite. If you can show the change
in energy is always negative definite, the system must be stable.

Lyapunov stability is what's used for VSS controllers.

Lyapunov Stability:

Example 1: Use Lyaponov methods to prove the following system is stable:

x
.
 3x

Step 1: Define a positive definite energy function:

V  1
2x2

Step 2: Check that the change in energy is negative definite:

V
.
 xx

.

V
.
 x3x

V
.
 3x2

This system is stable.

Example 2: Find the range of k which results in a stable system:

x
.
 3x  u

u  kx

Step 1: Define an energy function:

V  1
2x2

Step 2: Check that the change in energy is negative definite:

V
.
 xx

.

V
.
 x3x  kx

V
.
 3  kx2

To be stable

3  k  0

k  3

NDSU VSS ECE 463

2 April 21, 2017

Example 3:

X
.
 AX  BU

Define a sliding surface

  CX

Define an energy function

V  1
2

T  0

Pick U so that is negative definite:V
.

V
.
 T

.
 0

Substituting:

CXT 
CX

. 
  0

XTCTCAX  CBU  0

If

CBU  CAX

CB  0

then

XTCTCBU  0

XTCTU  0

Let

U    signCX

where

CB  CAX

If you add in a set point (R), you get

U    signCX  KrR

where Kr is picked so that

CX  KrR  0

at steady-state (i.e. Kr makes the DC gain zero to the fictitious output CX)

NDSU VSS ECE 463

3 April 21, 2017

Note that this is the same as the control law

U    signKrR  KxX

R
Kr

Kx

U
B

A

C
XsX Y

relay

VSS Control Law

Example: Double Integrator:

X
.






0 1
0 0




X 






0
1




U

Define the sliding surface to be

   1 1 X

Assume X is bounded by 10

CBU  CAX

  10

Then

U  10  signCX

Adding in a reference

U  10  signx  R  x
.


U  10  signR  x  x
.


The response for a step input is as follows. Note that the system behaves like a system with a pole at -1
(the zero in the transfer function from R to)

NDSU VSS ECE 463

4 April 21, 2017

Step Response for a VSS controller with = (s+1)X

If you plot x vs. dx/dt, you get the phase plane (below) you get a sliding mode. The controller pushes the
system to the sliding surface defined by the eigenvector associated with the eigenvalue of (s+1).

Phase Plane for y = (s + 1) x along with its sliding surface

If you plot the input, it chatters from -10 to +10 while you're on the sliding surface.

NDSU VSS ECE 463

5 April 21, 2017

Input u(t). Note that it chatters from -10 to +10 while you're on the sliding surface.

Matlab Code:
>> A = [0,1;0,0];
>> B = [0;1]
>> C = [1,0]
>> t = [0:0.01:10]';
>> Kx = [1,1];
>> DC = -C*inv(A-B*Kx)*B
>> Kr = 1/DC;

>> C = [1,0;0,1]
>> D = [0;0]

>> t = [0:0.001:5]';

>> [y, u] = step_vss(A,B,C,D, t, Kx, Kr);

% time response
>> plot(t,y)

% phase plane
>> plot(y(:,1), y(:,2));

% input
>> plot(t,u)

NDSU VSS ECE 463

6 April 21, 2017

Saturating Control

Rather than using a relay function, a saturating function with a large gain results in

Almost the same result (same sliding surface, same closed-loop response), but
The input no longer chatters

U limit10,kKrR  KxR,10

R
Kr

Kx

U
B

A

C
XsX Y

saturation

VSS Control Law

It's a really minor change but that results in an input that no longer chatters. Repeating the previous case
with a saturating function results in the following:

The output for a step input is almost the same: it approaches the set point with a pole at s = -1:

x (blue) and dx (green).
Saturating Control with sigma = (s+1)x

The phase plane shows a sliding mode corresponding to the eigenvector for a pole at s = -1:

NDSU VSS ECE 463

7 April 21, 2017

Phase Plane: Saturating Control with sigma = (s+1)x

But, the input no longer chatters.

Input (U) for saturating control with sigma = (s+1)x

Note that the zeros determine

The sliding surface and
The closed-loop poles

NDSU VSS ECE 463

8 April 21, 2017

VSS Control for an RC Filter (real zeros)

To illustrate how you can dictate the response by placing the zeros, consider the 4th-order heat equation:

sX 













2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 1












X 













1
0
0
0












U

>> A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1]
>> B = [1;0;0;0]

To place the zero, convert to controller canonical form using Bass Gura:

N = length(A);

T1 = [];
for i=1:N
 T1 = [T1, (A^(i-1))*B];
end

P = poly(eig(A));
T2 = [];
for i=1:N
 T2 = [T2; zeros(1,i-1), P(1:N-i+1)];
end

T3 = zeros(N,N);
for i=1:N
 T3(i, N+1-i) = 1;
end

T = T1*T2*T3;

Check that this transform (T) does in fact take you to controller canonical form (Ac, Bc):

>> Ac = inv(T)*A*T

 0 1.0000 0 0
 0 -0.0000 1.0000 0.0000
 0 0.0000 0.0000 1.0000
 -1.0000 -10.0000 -15.0000 -7.0000

>> Bc = inv(T)*B

 0
 0
 0
 1

NDSU VSS ECE 463

9 April 21, 2017

In controller canonical form the zeros are determined by the C matrix.

>> % poles at (-1, -2, -3)
>> poly([-1,-2,-3])

 1 6 11 6

>> Cc = [6,11,6,1]

 6 11 6 1

Checking: with output feedback, the closed-loop poles go to the zeros

>> eig(Ac-Bc*Cc*100)

 -101.0203
 -2.9899
 -1.9898
 -1.0000

Convert back to state-variable form with the linear transformation, T

>> C = [0,0,0,1];
>> D = 0;
>> Kx = Cz*inv(T)

 1.0000 1.0000 2.0000 2.0000

Check that the zeros are at {-1, -2, -3}

>> eig(A-100*B*Kx)

 -101.0203
 -2.9899
 -1.9898
 -1.0000

>> Kr = 6;

Take the step response and record the position (x) and velocity (CA = dx/dt):

>> Cx = [0,0,0,1]

 0 0 0 1

>> C = [Cx; Cx*A]

 0 0 0 1
 0 0 1 -1

>> D = [0;0]

 0
 0

NDSU VSS ECE 463

10 April 21, 2017

>> [y,u] = step_vss(A,B,C,D, t, Kx, Kr);
>> plot(t,y)

Step Response with VSS Control: sigma = (s+1)(s+2)(s+3)x
Position (blue) and velocity (green)

The phase plane shows the dominant pole at s = -1:
>> plot(y(:,1),y(:,2))
>> hold on
>> plot([1,1],[-0.2,1.2],'g')
>> plot([0,1.4],[0,0],'g')

Phase Plane: position vs. velocity

NDSU VSS ECE 463

11 April 21, 2017

Again, the input is chattering between -10 and +10 when you hit the sliding surface:

Input u(t) with VSS Control. Once you hit the sliding surface, it chatters between -10 and +10.

Case 2: Saturating Control.

Changing the input from

U  10  signKrR  KxX

to

U limit10,100KrR  KxX,10

keeps everything almost the same except the input no longer chatters.

Input u(t0 with Saturating Control. Once you approach the sliding surface, u(t) stops clipping.

NDSU VSS ECE 463

12 April 21, 2017

VSS Control for an RC Filter (complex zeros)

What works with real zeros also works with complex zeros. For example, make the closed-loop system
behave like a system with zeros at { -1 + j3, -1 - j3, -3}

>> poly([-1+j*3,-1-j*3,-3])

 1 5 16 30

>> Kx = [30, 16, 5, 1]*inv(T)

 1.0000 0.0000 10.0000 19.0000

Check: Are the zeros where we wanted:

>> eig(A-90*B*Kx)

 -92.1196
 -0.9410 + 2.9822i
 -0.9410 - 2.9822i
 -2.9983

Add Kr to make the DC gain one:
>> DC = -Cx*inv(A-B*Kx)*B

 0.0323

>> Kr = 1/DC

 31

Now take the step response with a VSS controller:

>> [y, u] = step_vss(A,B,C,D, t, Kx, Kr);
>> plot(t,y)

NDSU VSS ECE 463

13 April 21, 2017

VSS Control: Step Response with zeros at {-1 + j3, -1 - j3, -3}

The phase plane is from
>> plot(y(:,1),y(:,2))
>> hold on
>> plot([1,1],[-0.2,1.2],'g')
>> plot([0,1.4],[0,0],'g')

Phase Plane: The log spirals correspond to the complex zeros at {-1 + j3, -1 - j3}

NDSU VSS ECE 463

14 April 21, 2017

Input, u(t), for VSS control with zeros at {-1 + j3, -1 - j3, -3}. Once you hit the sliding surface, the input
chatters between -10 and +10.

If you change to a saturating controller, the response is almost the same except that the input no longer
chatters:

Input, u(t), for a Saturating Control with zeros at {-1 + j3, -1 - j3, -3}. Once you hit the sliding surface, the
input drops between -10 and +10.

NDSU VSS ECE 463

15 April 21, 2017

step_vss

function [y, u] = step_vss(A, B, C, D, t, Kx, Kr)

T = t(2) - t(1);
[m, n] = size(C);

npt = length(t);

Az = expm(A*T);
Bz = B*T;

X = zeros(n,1);

y = zeros(npt, m);
u = zeros(npt, 1);

y(1,:) = (C*X + D)';

for i=2:npt
 % VSS Control
 % U = 10*sign(Kr*1 - Kx*X);
 % saturating control
 U = max(-10, min(100*(Kr*1 - Kx*X), 10));

 X = Az*X + Bz*U;
 Y = C*X + D;

 y(i,:) = Y';
 u(i) = U;

 end

end

NDSU VSS ECE 463

16 April 21, 2017

