
ECE 463/663 - Homework #9
Calculus of Variations. Ricatti Equation. LQG Control.  Due Monday, April 7th

Soap Film

1)   Calculate the shape of a soap film connecting two rings around the X axis:

Y(0) = 8

Y(5) = 7

Soap films minimize the suruface area of the soap film.  This relates to the funcitonal

F = y 1 + y
.
2

From the lecture notes, the solution is of the form

y = a ⋅ cosh 
x−b
a



Plugging in the two endpoints, you get two equations and two unknowns

8 = a ⋅ cosh 
0−b
a



7 = a ⋅ cosh 
5−b
a



Set up a cost function in Matlab

function [J] = Soap(z)
   a = z(1);  
   b = z(2);
   e1 = a*cosh((0-b)/a) - 8;
   e2 = a*cosh((5-b)/a) - 7;
   J = e1^2 + e2^2;
   end

Solving using fminsearch() and Matlab results in two solutions:

>> [Z,e] = fminsearch('Soap',[1,2])
Z =    0.8852    2.5595
e =  3.3498e-008

>> [Z,e] = fminsearch('Soap',[5,6])
Z =    6.9027    3.8423
e =  2.9778e-010

a = 6.9027, b = 3.8424

a = 0.8852 b = 2.5595





2)   Calculate the shape of a soap film connecting two rings around the X axis:

Y(0) = 8

Y(3) = free

The shape of the soap film is

y = a ⋅ cosh 
x−b
a



The left endpoint gives one constraint

8 = a ⋅ cosh 
0−b
a



The right endpoint gives the constraint

y
.
(x = 3) = 0 = sinh



3−b
a



This has the solution

a = 7.3820

b = 3



Hanging Chain

3)  Calculate the shape of a hanging chain subject to the following constraints

Length of chain = 15 meters

Left Endpoint:  (0,8)

Right Endpoint: (10,7)

  

Hanging chains minimize the potential energy subject to a constraint that the length is 15.  The

functional to minimize is:

F = y 1 + y
.
1 + M 1 + y

.
2

From the lecture notes, the solution is of the form

y = a ⋅ cosh 
x−b
a

 − M

L = 
a ⋅ sinh 

x−b
m




0

10

= 15

Set up a cost function in Matlab

function J = chain(z)
a = z(1);
b = z(2);
M = z(3);
 
Length = 15;
x1 = 0;
y1 = 8;
 
x2 = 10;
y2 = 7;
 
e1 = a*cosh((x1-b)/a) - M - y1;
e2 = a*cosh((x2-b)/a) - M - y2;
e3 = a*sinh((x2-b)/a) - a*sinh((x1-b)/a) - Length;
 
J = e1^2 + e2^2 + e3^2;
 
end

Solve using fminsearch()

>> [Z,e] = fminsearch('chain',10*rand(1,3))

         a          b         M
Z =    3.0915    5.2064    0.6147

e =  1.1351e-008

This looks like the following:



>> a = Z(1);
>> b = Z(2);
>> M = Z(3);
>> x = [0:0.01:10]';
>> y = a*cosh((x-b)/a) - M;
>> plot(x,y)



Ricatti Equation

4) Find the function, x(t), which minimizes the following funcional

J = ∫0
10

(x2 + 10x
.
2
)dt

x(0) = 8

x(10) = 7

The functional is

F = x2 + 10x
.
2

The solution must satisfy the Euler LaGrange equation

Fx −
d

dt
(Fx

. ) = 0

2x −
d

dt
(20x

.
) = 0

2x − 20ẍ = 0

Using the LaPlace operator

2(1 − 10s2)X = 0

Either

x = 0 (the trivial solution), or

s = {+0.3162, -0.3162}

Going with the latter solution, x(t) is of the form

x(t) = ae0.3162t + be−0.3162t

Plugging in the endpoint constraints

x(0) = 8 = a + b

x(10) = 7 = 23.6243a + 0.0423b

Solving

a = 0.2825

b = 7.7175

and

x(t) = 0.2825e0.3162t + 7.7175e−0.3162t



Plotting this in Matlab

>> B = [1,1 ; exp(10*sqrt(0.1)),exp(-10*sqrt(0.1))];
>> X = inv(B) * [8;7];

    0.2825
    7.7175

>> a = X(1)
a =    0.2825

>> b = X(2)
b =    7.7175

>> x = a*exp(sqrt(0.1)*t) + b*exp(-sqrt(0.1)*t);
>> plot(t,x)
>> ylim([0,8])
>> 



5) Find the function, x(t), which minimizes the following funcional

J = ∫0
10

(x2 + 10u2
)dt

x
.

= −0.5x + u

x(0) = 8

x(10) = 7

The functional is

F = x2 + 10u2 + m(x
.

+ 0.5x − u)

This gives three Euler LaGrange equations for {x, u, m}

x: Fx −
d

dt
(Fx

. ) = 0

(2x + 0.5m) −
d

dt
(m) = 0

(2x + 0.5m) − m
.

= 0

u: Fu −
d

dt
(Fu

. ) = 0

(20u − m) −
d

dt
(0) = 0

m = 20u

m: Fm −
d

dt
(Fm

. ) = 0

x
.

+ 0.5x − u = 0

Solving, substitute for u

u = m/20

x
.

+ 0.5x − m/20 = 0

m = 20x
.

+ 10x

Substitute m into the first equation

2x + 0.5m − m
.

= 0

2x + 0.5(20x
.

+ 10x) − (20ẍ + 10x
.
) = 0

−20ẍ + 7x = 0

Using LaPlace notation



(−20s2 + 7)X = 0

Either

x(t) = 0 trivial solution,

s = +0.5916,  -0.5916

Going with the latter solution

x(t) = ae0.5916t + be−0.5916t

Plugging in the endpoint constraints

x(0) = 8 = a + b

x(10) = 7 = 370.9546a + 0.0027b

Solving

>> s = sqrt(7/20)
    0.5916

>> B = [1,1;exp(10*s),exp(-10*s)]

    1.0000    1.0000
  370.9546    0.0027

>> A = inv(B)*[8;7]

a    0.0188
b    7.9812

>> a = A(1);
>> b = A(2);
>> t = [0:0.01:10]';
>> x = a*exp(s*t) + b*exp(-s*t);
>> plot(t,x)
 



LQG Control for a Cart & Pendulum

6)  Cart & Pendulum (HW #4 & HW#6):  
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Design a full-state feedback control law of the form

F = U = KrR − KxX

for the cart and pendulum system from homework #4 using LQG control so that

The DC gain is 1.00

The 2% settling time is 6 seconds, and

There is less than 10% overshoot for a step input.

Using trial and error, a good controller results from

A = [0,0,1,0;0,0,0,1;0,-19.6,0,0;0,19.6,0,0];
B = [0,0,0.6667,-0.4444]';
C = [1,0,0,0];
D = 0;
 
Qx = C'*C;
Qv = (C*A)'*(C*A);
 
Kx = lqr(A,B,Qx*20+Qv*0,1);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
t = [0:0.01:8]';
G = ss(A-B*Kx, B*Kr, C, D);
y = step(G,t);
plot(t,y);

With this cost function, the 'optimal' control law is

Kx =   -4.4721 -126.6062   -8.6755  -36.2443

Kr =   -4.4721

>> eig(A-B*Kx)

  -4.4215 + 0.2253i
  -4.4215 - 0.2253i
  -0.7400 + 0.6682i
  -0.7400 - 0.6682i

Back in homework #6

Kx = -6.16    -133.78    -10.12   -39.093

The gains are about the same

Q

X

L = 1.5m

(x2, y2)

m2 = 3kg

(x1,y1)

m1 = 1.5kg

F



Step response from LQR (blue) and pole-placement (red)



7)  Ball and Beam (HW #4 & HW#6):   
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Design a full-state feedback control law of the form

T = U = KrR − KxX

for the ball and beam system from homework #4 using LQG control so that

The DC gain is 1.00

The 2% settling time is 6 seconds, and

There is less than 10% overshoot for a step input.

A reasonable response comes from

A = [0,0,1,0;0,0,0,1;0,-7,0,0;-7.434,0,0,0];
B = [0,0,0,0.3454]';
C = [1,0,0,0];
D = 0;
 
Kx = lqr(A,B,diag([1,0,70,580]), 1);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
t = [0:0.01:8]';
G = ss(A-B*Kx, B*Kr, C, D);
y = step(G,t);
plot(t,y,t,0*t+1.1,'m--');

The optimal feedback gains with this cost funciton are:

Kx =  -43.0690  106.1646  -26.8989   34.5649

Kr =  -21.5461

>> eig(A-B*Kx)

  -8.4107          
  -0.9736 + 1.7234i
  -0.9736 - 1.7234i
  -1.5809          

Back in homework #6

Kx = -32.67    103.60    -18.25    -30.72

so the gains are pretty similar.  The step response is maybe a little faster but similar.

Q

T r

m = 2.2kg

J = 0.7 kg m^2



Step Respons using LQR (blue) and Pole Placement (red)


