Diodes, & Transistors

ECE 401 Senior Design I

Week #5

Please visit Bison Academy for corresponding lecture notes,homework sets, and videoswww.BisonAcademy.com

Introduction

In ECE 401, you can choose from a dozen different circuits to build.Regardless of which one you select, your overall design:

- Must operate at 5VDC
- Must have LEDs operating at 20mA +/- 5mA
- Must have one NPN and one PNP transistor (or more), capable of driving a 100mAload
- Must have at least one IC (Pi-Pico, MCP602 op-amp, 555 timer)

This lecture covers:

- Analysis and design of LED circuits,
- Analysis and design or NPN and PNP electronic switches,

Diodes

Covered in ECE 320 Electronics I.

Diodes act as valves:

- Current allow current to flow from the anode to the cathode,
- Current block current from flowing the other way.

Because of this, the symbol for a diode looks like an arrow: this arrow servesas a reminder for which way the current can flow.

Symbol for a diode: Diodes only allow current to flow from the anode to the cathode

Diode VI Characteristics

Diodes are nonlinear devices

This makes analysis of diode circuits difficult

Ideal Diode

- Simplified model of a diode
- \cdot Id = 0 when Vd < Vf
- $Vd = Vf$ when $Id > 0$

Not perfect, but usually good enough

Use CircuitLab to get better answers

Ideal Diode Model

Vf acts like a turn-on voltage:

- Diode turns on if you apply more than Vf
- Diode turns off if you apply less than Vf

Vf depends upon the diode

- Germanium: $Vf = 0.3V$
- $Vf = 0.7V$ • Silicon:
- Red LED: $Vf = 1.9V$
- Yellow LED: $Vf = 2.0V$
- Green LED: $Vf = 2.0V$ to 3.0V

Diode Example (CircuitLab)

In CircuitLab, you can build this circuit through drag and drop.

- R rotates the element
- Double Click to change values
- $k = 1000$
- $M =$ million
- \cdot m = milli
- $\cdot u =$ micro

Make sure you have a ground (CircuitLab insists on this)

Once completed, you can determine the voltages and currents by

- Clicking on Add Expression and then click on the voltage node to see that voltage
- Click on one side of a resistor to see the current through that resistor

When the diode is turned on $(\text{Id} > 0)$, the voltage drop is 0.7V (ish)

When you try to push current backwards, the diode turns off

- \cdot Id = 0 (ideal diode)
- $Id = -76.90pA$ (CircuitLab)

Diodes *do* conduct current when reverse biased, but it's really small

CircuitLab & Time Domain Simulations

- Similar to an oscilloscope
- Apply a sine wave for V3
- Run the simulation for 2-3 cycles
- Set the sampling rate 1000x smaller (gives 1000 points on the graph)

Resulting Waveform:

- When $Vin > 0.7V$, the diode turns on
	- $-$ Vout = Vin $-$ 0.7V (ish)
- When V in $< 0.7V$, the diode turns off
	- $Vout = 0V$

Diode Circuit Analysis:

- Determine which diodes are on and off
	- Not always that easy
- Replace with the ideal diode model
- Determine voltages and currents

Calculations:

$$
I_1 = \left(\frac{5V - 0.7V}{1k}\right) = 4.3mA
$$

$$
I_2 = \left(\frac{5V - 1.9V}{2k}\right) = 1.55mA
$$

$$
I_3 = \left(\frac{5V - 2.0V}{3k}\right) = 1.00mA
$$

Diode Circuit Design:

- Pick the current desired
	- Light is proportional to current
- Calculate the resistance needed

Example: Set Id = 20mA
\n
$$
R_1 = \left(\frac{5V - 0.7V}{20mA}\right) = 215\Omega
$$
\n
$$
R_2 = \left(\frac{5V - 1.9V}{20mA}\right) = 155\Omega
$$
\n
$$
R_3 = \left(\frac{5V - 2.0V}{20mA}\right) = 150\Omega
$$

Light Emitting Diodes (LEDs)

LEDs are nothing more than diodes - except that they produce light proportional to the current flowing through them. As diodes, they can beapproximated with an ideal-diode model:

- \cdot Id = 0 if Vd < Vf
- \cdot Vd = Vf if Id > 0

The on-voltage (Vf) depends upon the diode and is usually specified in thediode's data sheets:

With LEDs, brightness is proportional to current

Assuming a 9V source (the kit assume you're using a 9V battery). the currentand brightness of the first diode (330 Ohms) is:

$$
I = \left(\frac{9V - 2.0V}{330\Omega}\right) = 21.21mA
$$

The brightness is then proportional to this current where $20mA = 450mod$:

 $\Big($ $\left(\frac{21.21mA}{20mA}\right)$ $\bigg)$ ⁴⁵⁰*mcd* = 477.2*mc d*

Voltage Regulation

In ECE 401,

- Power to your PCB comes from a 9V battery, while
- Your components on your PCB operate off of 5VDC.

Solution: Use a LM7805 regulator

- Pro: Simple circuit
- Con: Efficiency = 55% @ 9V

Example:

- Convert 9V down to 5V, and
- Drive an LED at 10mA from the 5V source

Assuming a red LED

$$
R = \left(\frac{5V-1.9V}{10mA}\right) = 310\Omega
$$

Interpreting the Results:

- \cdot V2 = 5V (close)
	- The 7805 is doing its job
- \cdot V3 = 1.9V (close)
	- The red LED is on
- I3 = 10mA (close)
	- R2 is correct

You could find tune R2 if you really want 10.00mA exactly.

Reverse Polarity Protection & Overcurrent Protection

Another requirement for your PCB in ECE 401 is to add

- Reverse polarity protection
	- connecting 9V to your PCB backwards will not fry your PCB
- Overcurrent protection
	- if your circuit draws too much current, a fuse blows.

There are several ways to do this.

Method #1: Diode + Fuse.

- Diodes do not allow current to flow backwards
	- Blocks current if the 9V battery is inserted backwards
- Fuse blows if the load is too much
	- 1 Ohm resistor replaces the fuse for ECE 401 (2 cents)

Problem:

• Drops 0.7V through the diode

Method #2: Fuse + Diode.

Add a reverse biased diode to ground

- If the 9V battery is connected correctly, the diode remains off.
- If the 9V battery is reversed,
	- The diode turns on, limiting the voltage to the LM7805 to -0.7V,
	- The current through the fuse becomes large (9A), blowing the fuse.

BJT Transistors

Bipolar Junction Transistors

- Electronic switches (you can turn a device on and off using $0V \& 5V$),
- Which amplify current (1mA can turn on and off a device which draws 100mA)

The current amplification and the maximum current a given BJT transistor canhandle depends upon which transistor you're using.

NPN and PNP Transistors

Two types of BJT transistors exist:

- PNP: an electronic switch which connects your device to +5V, or
- NPN: an electronic switch which connects your device to ground.

The basic circuit for each of these are as follows:

Diode from Base to Emitter

The arrow going between the base and the emitter is all important:

- It represents a diode (a pn junction)
- It tells you the direction current flows
- The base current controls the collector current

Ib limits the collector current

$$
I_c = \beta I_b = 100 I_b
$$

It does this by dumping voltage

Whatever it takes to set Ic

Load Lines

A good way to see how a transistor switchoperates

- When Ic = 0mA, $Vce = 5V$
	- the x-axis intercept
- When $Vce = 0V$, $Ic = 20mA$
	- the y-axis intercept

The line connecting these two points is called*the load line.*

Any solution has to be on the load linesomewhere.

Off State:

- \cdot Ib = 0
- $Ic = 100*Ib = 0$
- \cdot Vce = 5V

Active Region

- $0mA < Ib < 20mA$
- $5V > Vce > 0.2V$
- Ic = $100*$ Ib

On State

- Saturated Region
- $100*$ Ib > $20mA$
- $Vce = 0.2V$

The Active Region is Bad

You want to operate in the ON and OFF stateOff State

- \cdot I = 0
- $P = V^*I = 0$

On State

- $V = 0.2V$ (almost zero)
- $-I = 20mA$
- P = 4mW (almost zero

Active Region

- \cdot P = V*I
- The transistor gets hot
- You start to melt your breadboard

Analysis of Transistor Switches:

Same equations for PNP and NPN

Off State

Easy: Ib = Ic = 0

On State:

$$
V_{ce} = 200mV
$$

$$
I_c = \left(\frac{5V - V_f - V_{ce}}{R_c}\right)
$$

$$
I_b = \left(\frac{5V - 0.7V}{R_b}\right)
$$

Check that you're saturated:

$$
\beta I_b > I_c
$$

$$
I_b > \left(\frac{I_c}{100}\right)
$$

BJT Switch Example

Assume

- $Rc = 50$ Ohms
- $Rb = 1k$ Ohms
- $Vf = 1.9V$ (red LED)
- 3904 NPN transistor with a current gain of 100

What you expect when V in = 5V is

- Vb = 0.7V *the drop across a silicon diode*
- Vc = 0.2V *saturated*
- \cdot Ic = 58.0mA

$$
I_c = \left(\frac{5V - 1.9V - 0.2V}{50\Omega}\right) = 58.0mA
$$

In CircuitLab, what you get is close but slightly different:

- \cdot Vb = 0.8118V
	- calculated = 0.7V (ideal diode)
- $Vc = 0.0909V$
	- calculted = 0.2V
- $I(D1) = 51.11 \text{mA}$
	- Close to 58.0mA

Operation in the Active Region

If Ib is too small, then the transistor enters the active region (bad)

Example: Increase Rb to 100k

- Ib = $42.93uA$
- Ic = min(βIb, max(Ic)) = 6.21mA
- Vce = $2.85V$ (active region)

What happens when you operate in the active region?

- \cdot Ic $<$ 58mA
- The transitor gets hot
	- and can melt the breadboard

Avoid operating in the active region when usinga transistor as a switch

Keep $Vce = 0.2V$ (ish)

Design of Transistor Switches:

- Pick Rc to set the desired current
- Pick Rb to saturate the transistor
	- $-$ Ib $>$ Ic/100

For example, design a circuit

- To turn on and off a red LED
- At 20mA when on,
- Using a 0V/5V input capable of driving at most5mA.

Solution:

First pick Rc to set the current to 20mA

$$
R_c = \left(\frac{5V-1.9V-0.2V}{20mA}\right) = 145\Omega
$$

Next, pick Ib so that the transistor issaturated

$$
I_b > \left(\frac{I_c}{100}\right) = 0.2mA
$$

Let $Ib = 1mA$ $R_c = \left(\frac{5V-0.7V}{1mA}\right) = 4.3k\Omega$

Same equations for a PNP switchResuting Circuit

NPN Switch with a Pi-Pico Have a Raspberry Pi-Pico turn on an off a red LED $At 20mA$ Using an NPN transistorPick Rc to set the current $R_c = ($ \setminus 5*V*−1.9*V*−0.2*V* 20*mA* $\bigg)$ \int $R_c = 145\Omega$ Pick Rb to set the voltage• Saturate the transistor $\beta I_b > I_c = 20mA$ Let $Ib = 1mA$ $R_b = ($ $\left(\frac{3.3V-0.7}{1mA}\right)$ *V* 1*mA* $\bigg)$ $= 2.6k\Omega$ Pi-PicoGP0Ic 20mA $+5V$ Rc 145 $Rb = 2.6k$ $Ib = 1mA$ Red LED1.9V $0.2V$ 3.3V \land \land \land 0.7V

PNP Switch with a Pi-Pico

Have a Raspberry Pi-Pico turn on an off a red LED

- At 20mA
- Using a PNP transistor

Similar design but an op-amp

Level shifter circuit (convert 3.3V to 5.0V)

Summary

Diodes can be used as electronic valves

They let you control block reverse current.

BJT transistors can be used as electronic switches.

- They let you turn on and off devices
- They amplify current, allowing larger loads to be turned on and off

Homework #5:

• Due week $#10$

Reminder: ECE 401 Circuit Requirements

- Must operate off of 5VDC
- Must include at least one integrated circuit
- Must include at least one LED with $Id = 20mA +1.5mA$
- Must include at least one NPN and one PNP transistor
	- Use a LM7805 regulator to drop 9V to 5V
- Must have a reverse-polarity protection diode
- Must have a 1/4 Watt 1-Ohm resistor in series with the power supply

1. Build your circuit on a breadboard

- Power comes from a 9V battery
- Include a photo in your OneNote document

Homework #5 (cont'd)

2. Take measurements to verify your circuit works

- Include these measurements in your OneNote document
- *Note where you these are recorded on your schematic*.
- *These are the test points for your upcoming PCB)*
- DC Measurements (all cases)
	- Vbat $(9V)$
	- Vreg $(5V)$
	- Vbe for the NPN transistor when ON
	- Vce for the NPN transistor when OFF
	- Current through the LED when ON
	- Total current draw
- If using a 555 Timer, also provide waveforms (transient response: 2-3 cycles)
	- Waveform @ C1
	- Waveform @ Threshold
	- Waveform @ Discharge
	- Waveform @ Timer Out

Homework #5 (cont'd)

- If using an op-amp (MCP602), also provide the following DC measurements:
	- Voltge at inverting input when on and off
	- Voltage at non-inerting input when on and off
	- Voltage at Op-Amp output when on and off
- If using a microcontroller (Raspberry Pi Pico)
	- Voltage at uP output when on (5V) and off (0V)
	- DC voltage at the PNP transistor (Vb, Vc, Ve)

3) Parts List

- Parts used in your breadboard
- Vendor & Vendor number
- Description
- Price