
Designs using Python

& a Raspberry Pi-Pico

ECE 401 Senior Design I

Week #5

Please visit Bison Academy for corresponding lecture notes,
homework sets, and videos

Introduction

In Senior Design I, you can

Use a microcontroller, or

Not use a microcontroller

Microcontrollers can simplify many designs

They provide a great deal of flexibility

They make changing your design as simple
as downloading a new program

It's your choice

If you do use a microcontroller, use a
Raspberry Pi-Pico

$4 and we have them in stock

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28/AN2

GND

GP27/AN1

GP26/AN0

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

GP16

Raspberry Pi Pico

Topics:

In this lecture, we going to cover

Hardware:

- How to wire up a Raspberry Pi-Pico
- How to connect a push button (binary input)
- How to connect an LED (binary output)

Software:

- Writing a program using Python
- Setting up a Pi-Pico to execute that program on power-on

Power:

Power can be provided through:

USB:

- The USB cable provides 5V to the Pi-Pico

VSYS (pin 39):

- Provide 1.8V to 5.5V to VSYS.

Either way, the Pico geneates two outputs:

VBUS (pin 40): Outputs 5V

3.3V (pin 36) Outputs 3.3V

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28/AN2

GND

GP27/AN1

GP26/AN0

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

GP16

Raspberry Pi Pico

Binary I/O:
GP0 to GP28 can be binary input or output

Binary Outputs

0V is logic 0

3.3V is logic 1

Can source or sink up to 12mA

Binary Inputs:

(0.0V - 0.8V) is logic 0

(2.0V to 3.5V) is logic 1

Do not connect 5.0V to the Pi-Pico's

input pins. This may damage the

Pi-Pico.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28/AN2

GND

GP27/AN1

GP26/AN0

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

GP16

Raspberry Pi Pico

Internal Pull-Up / Pull-Down Resistors

If set as input, you can include

An internal pull-up resistor, or

A pull-down resistor.

Pull-Up:

Floating lead is read as logic 1

Ground pin to read as logic 0

Pull-Down

Floating lead is read as logic 0

Tie to +3.3V to read as logic 1

Pull-up is preferred for push-buttons

Safer

No confusion about what logic 0 means

3.3V

50k - 65k

50k - 65k

GPX

GPX

GPX

No Resistors

Pull-Up

Pull-Down

Pi-Pico

Pi-Pico

Pi-Pico

Hardware Example:
Power: from the USB cable

Inputs: Push button connected to GP0

Outputs: Three LEDs connected to GP6, GP7, and GP8

The hardware could be:

3.3V
VSYS

GND

GP0

GP6

GP7

GP8

5.0V

5.0V 5.0V 5.0V

GP7 GP6

Rr Ry Rg

RbRbRb

Ib < 12mA

Ic

Button

internal

pull-up

Pi-Pico

Green

LED
Yellow

LED

Red

LED

Software: Thonny and MicroPython

Several programming languages are
available for a Pi-Pico, including

Assembler

C

Python (MicroPython for a Pi-Pico)

among others. In this lecture, we focus
on MicroPython.

MicroPython is version of Python

Reduced functionality

Fits on a microcontroller like a Pi-Pico

Free (!)

- www.Thonny.org

Python is very similar to Matlab:

Both are interpretive languages:

Program executes line by line

You can see the result after each
line executes

Both use similar syntax

Code that works in Matlab mostly
works in Python

Both use a similar console

Program window

Command window

Thonny: On Start-Up

Icons

File New / Open / Save

Run (run the script)

Stop (stop the program - clear memory)

Donate to Ukraine

Script Window

programs you can execute

Shell Window

Command-window in Matlab-speak

Type in code by hand

See result of program execution

Lower-Right Corner

What connected to

Python vs. Matlab

Python is similar to Matlab

You can type commands directly in the
shell window.

You can use Python like a calculator

Open Save Run Stop

Shell

>>> a = 2

>>> b = 3

>>> c = 2*a + 3*b + 4
>>> print c

 17

You can also place this code in the
script window

Run executes the program

Open Save Run Stop

a = 2
b = 3

c = 2*a + 3*b + 4

print(c)
Shell

>>>

 17

Declaring Variables

You don't have to declare variables

Creating them on the fly is OK

Variable types are automatic

a = 3: integer

a = 3.3: float

Python will change types as needed

c = a / b is a float

Open Save Run Stop

Shell

>>> a = 2

>>> b = 3

>>> c = a / b

>>> print c

 0.666666667

Binary I/O with Python

Python is a little different than Matlab. For one thing, to use functions in a
library, you have to use the import command. This makes that library
available for use in your program.

Two important libraries are the machine and time library.

Machine contains routines specific to the microcontroller you're using, such as
setting I/O pins to input, output setting the frequency and duty cycle for square
waves, etc.

Time contains wait routines.

Within machine is the function Pin - which controls whether a pin is input
or output. Options are:

import machine

Output

Button = machine.Pin(0, Pin.OUT)

Inputs

LED0 = machine.Pin(6, Pin.IN)

LED1 = machine.Pin(7, Pin.IN, Pin.PULL_UP)

LED2 = maching.Pin(8, Pin.IN, Pin.PULL_DOWN)

machine.Pin()

Use the routine Pin from library machine.

Allows different libraries to have identical function names

It does get a little unwieldy, however.

Shortcut:

Pull in routine Pin

Outputs:

Pin 0 is output

Capable of 12mA

Inputs:

Pin 6 is input

Pin 7 with a pull-up resistor

Pin 8 with a pull-down R

from machine import Pin

line 3

Button = Pin(0, Pin.OUT)

#line 4-6

LED0 = Pin(6, Pin.IN)

LED1 = Pin(7, Pin.IN, Pin.PULL_UP)

LED2 = Pin(8, Pin.IN, Pin.PULL_DOWN)

Accessing I/O Pins

Reading:

Returns 1 or 0

Writing:

Toggle: switch on/off

value()

- 0 = off
- non-zero = on

read

Y = Button.value()

write

LED0.toggle() # toggle LED0 on/off

LED0.value(1) # set LED0

LED0.value(0) # clear LED0

LED0.low() # clear LED0

LED0.high() # set LED0

Time Library
sleep(x): pause x seconds. x can be a floating-point number

sleep_ms(x): pause x milliseconds. x must be an integer

sleep_us(x): pause x microseconds. x must be an integer.

Open Save Run Stop

Example:

Turn on an LED

For 2 seconds

Then turn off

Note:

print() sends a message to the
console

nice for debugging

from machine import Pin

from time import sleep

LED = Pin(6, Pin.OUT)

LED.value(1)

print('LED On')

sleep(2)

LED.value(0)
print('LED Off')

Shell

>>>

 LED On

 LED Off

Loops

Python supports

for-loops

while-loops

if - else if - else

statements

Syntax is different

Colon:

- Start of loop

Indendation:

- Part of loop

Remove indentation

- End of loop

In Python, carriage returns and
indentation have meaning

for i in range(0,5):

 print(i, i*i)

x = 3

while(x > 0):

 x -= 1

a = b = 4

if(a > b):

 print('a is greater than b')

elif(a == b):

 print('a is equal to b')

else:

 print('a is less than b')

For-Loops:
Starts with the first number

Stops when equal or greater than second

- different than matlab

Open Save Run Stop

Example:

range(0,5)

Counts from 0 to 4

for i in range(0,5):

 print(i, i*i)
Shell

>>>

 0 0

 1 1

 2 4

 3 9

 4 16

Open Save Run Stop

If you add a third term, this is the
step-size

for i in range(0,5, 2):
 print(i, i*i)

Shell

>>>

 0 0

 2 4

 4 16

Open Save Run Stop

If you include an array, the for-loop
steps through the array

for i in [1,3,5,7,11]:

 print(i, i*i)
Shell

>>>

 1 1

 3 9
 5 25

 7 49

 11 121

Example: Counter in Python

As an example, write a Python program that counts how many times a
button was pressed. Assume the hardware is:

3.3V
VSYS

GND

GP0

GP6

GP7

GP8

5.0V

5.0V 5.0V 5.0V

GP7 GP6

Rr Ry Rg

RbRbRb

Ib < 12mA

Ic

Button

internal

pull-up

Pi-Pico

Green

LED
Yellow

LED

Red

LED

Open Save Run Stop

Counter in Python

Counts button presses

Displays on LEDs

Count in binary

from machine import Pin
from time import sleep

Button = Pin(0, Pin.IN, Pin.PULL_UP)

g = Pin(8, Pin.OUT)

y = Pin(7, Pin.OUT)

r = Pin(6, Pin.OUT)

N = 0

while(1):

 while(Button.value() == 0):

 pass
 while(Button.value() == 1):

 pass

 N = (N + 1) % 8

 g.value(N & 0x01)

 y.value(N & 0x02)

 r.value(N & 0x04)

 print(N, r.value(), y.value(), b.value())

Shell

1 0 0 1
2 0 1 0

3 0 1 1

Subroutines in Python

Subroutines are defined by the keyword def

short for define.

Open Save Run Stop

Example: A routine which

is passed nothing,

returns nothing, and

simply prints 'hello' when called:

def SayHello():

 print('hello')

Start of main routine

SayHello()

shell

>>>
hello

In this example, note that

The subroutine is called SayHello

Nothing is passes to this routine as indicated by the ()

The definition is terminated with a colon (:)

The code within the subroutine must be indented as per the Python standard

Passing Parameters

You can pass parameters to subroutines.

Open Save Run Stop

Example: Pass N

CountToN(5)

- Pass the number 5
- Received as N=5

def CountToN(N):

 for i in range(1,N+1):

 print(i)

Start of main routine

CountToN(5)
Thonny Program Window

>>>

1

2

3

4

5

Passing Multiple Parameters

Include them in the definition

Open Save Run Stop

def Multiply(A, B):

 C = A * B

 print(A, ' * ', B, ' = ',C)

Start of main routine

Multiply(4,6)
shell

>>>

4 * 6 = 24

>>> Multiply(8,7)

8 * 7 = 56

Returning Numbers

Python can

Return zero numbers, or

One variable

Open Save Run Stop

Example:

Return one number

Example of Returning One Number

def Multiply(A, B):

 C = A * B

 return(C0)

Start of main routine

X = Multiply(4,6)

print(X)
shell

>>>

24

>>> C = Multiply(8,7)

>>> print(C)

56

Open Save Run Stop

Example:

Return multiple numbers

Returned as an array

When receiving the results

Can receive as a single array

Can receive as separate variables

Example of Returning four Numbers
def Operate(A, B):

 C0 = A + B

 C1 = A - B

 C2 = A * B

 C3 = A / B

 return([C0, C1, C2, C3])

Start of main routine

X = Operate(4,6)

print(X)
shell

>>>

[10, -2, 24, 0.666667]

>>> C = Operate(8,7)

>>> print(C)

[15, 1, 56, 1.4142857]

>>> [a,b,c,d] = Operate(8,7)

>>> print(a, b, c, d)

15, 1, 56, 1.4142857

Open Save Run Stop

Going back to the
counter program, you
could clean up the
code with a subroutine:

from machine import Pin
from time import sleep

Button = Pin(0, Pin.IN, Pin.PULL_UP)

g = Pin(8, Pin.OUT)

y = Pin(7, Pin.OUT)

r = Pin(6, Pin.OUT)

def Display(X):

 g.value(X & 0x01)

 y.value(X & 0x02)

 r.value(X & 0x04)

while(1):

 while(Button.value() == 0):

 pass

 while(Button.value() == 1):

 pass

 N = (N + 1) % 8

 Display(N)

 print(N, r.value(), y.value(), b.value())
Shell

1 0 0 1
2 0 1 0

3 0 1 1

Program Execution on Startup

Make your Pi-Pico blink three times at 2Hz on power-up

On for 100ms

Off for 400ms

repeat 3x

First, create a program (assume GP16 has an LED attached)

Open Save Run Stop

from machine import Pin

from time import sleep

LED = Pin(16, Pin.OUT)

for i in range(0,3):

 LED.value(1)

 sleep(0.1)

 LED.value(0)

 sleep(0.4)
Shell

Once this runs,

Go to File Save As

Select save to Raspberry Pi Pico

Save as main.py

On power up, this program will
execute.

Appendix: MicroPython Syntax

Assigning values to variables:
X = 123 decimal 123

X = 0x123 hex 123

x, y, z = 1, 2, 3

X = [1,2,3,4,5] matrix or array
X = range(1,6) same matrix

X = [[1,2],[3,4]]2x2 matrix

Operations
+ add

- subtract

* multiply

/ divide (result is usually a float)

// divide and round down (result is integer)

% modulus (remainder)

** raise to the power

X.append(6) append 6 to the end of array X

Logic Operations
& logical AND (bitwise)

| logical OR (bitwise)

^ logical XOR (bitwise)

>> shift right

<< shift left

comment statement
this is a comment statement

Conditionals:

X > Y

X < Y

X >= Y

X == Y

X != Y

Converting variable types:
int(X) convert to an integer, round down

round(X) round to nearest integer
float(X) convert to a floating point number

note: Python automatically adjusts variable types - you don't need to declare
them like you do in C. For example:

>>> X = 3 X is automatically treated like an integer

>>> Y = 4 Y is automatically treated like an integer

>>> Z = X/Y Z becomes a float (0.75)

>>> Z = X//Y Z is an integer (0)

print() Information can be sent to the shell window using a
print() statement

>>> print('Hello World')

Hello World

>>> X = 2**0.5
>>> print('X = ',X)

X = 1.414214

X = input() Information can be passed to your program using the input()

statement. For example, prompt the user to input a number for X:
>>> X = input('Type in a number')

This will result in X being a string (typing in Hello World is valid). If you
want to receive the input as a number, convert the result as:

>>> X = int(input('Type in a number'))

>>> X = float(input('Type in a number'))

When writing to the shell, numbers can be formatted if desired. Examples
follow:

>>> msg = '27 in binary = {:b}'.format(27)

>>> msg

'27 in binary = 11011'

>>> msg = '27 in binary = {:b}'.format(27)

>>> msg

'27 in binary = 11011'

>>> msg = '27 in hex = {:X}'.format(27)

>>> msg
'27 in hex = 1B'

>>> msg = '0x2134 in decimal = {:d}'.format(0x1234)

>>> msg

'0x2134 in decimal = 4660'

>>> msg = '123.4567 rounded to 2 decimal = {:.2f}'.format(123.4567)

>>> msg

'123.4567 rounded to 2 decimal = 123.46'

>>> msg = '123.4567 rounded to 2 decimal = {:.2e}'.format(123.4567)

>>> msg
'123.4567 rounded to 2 decimal = 1.23e+02'

>>> msg = '79/255 = {:.2%}'.format(79/255)

>>> msg

'79/255 = 30.98%'

