
Breadboards, Raspberry Pi-Pico,

& Python

ECE 401 Senior Design I

Week #3

Please visit Bison Academy for corresponding lecture notes,
homework sets, and videos

Introduction

In Senior Design I, you can

Use a microcontroller, or

Not use a microcontroller

Microcontrollers can simplify many designs

They provide a great deal of flexibility

They make changing your design as simple
as downloading a new program

It's your choice

If you do use a microcontroller, use a
Raspberry Pi-Pico

$4 and we have them in stock

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28/AN2

GND

GP27/AN1

GP26/AN0

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

GP16

Raspberry Pi Pico

Topics:

In this lecture, we going to cover

Breadboards

- What they are
- Do's and Don'ts of breadboard design

Hardware:

- How to wire up a Raspberry Pi-Pico
- How to connect a push button (binary input)
- How to connect an LED (binary output)

Software:

- Writing a program using Python
- Setting up a Pi-Pico to execute that program on power-on

Breadboards:

Once you have your circuit

Designed on paper, and

Tested in simulation (CircuitLab)

you're ready to test your design in
hardware. Breadboards are an easy way
to build your circuit and test your design.
They're also easy to modify and change:
components can be easily added and
removed from a breadboard.

Most of the breadboard used in ECE are 830 tie breadboards. These have

Four edge connectors that are shorted along the length of the breadboard

two left side, two right side. Usually used for power and ground

Two sets of connectors in the middle

one left and one right of the center bar.

Across the middle is an insulator

this separates the middle connectors by 300 mils: the width of a typical IC,

For example, the following breadboard circuit uses

The red trace along the top and bottom as +5V

The blue trace along the top and bottom as 0V

Two IC's go across the middle divider.

The four pins above and below each IC then allow you to connect to that pin

Purpose of Breadboarding:
Verify your design works in practice

Step 1) Paper Design

In theory it works...

Step 2) Simulation (CircuitLab)

Check your design with nonlinear
models

Step 3) Breadboard

Check your actual design

Step 4) PCB

More permanent & abuse tolerant

Less noise sensitive

Smaller, easier to package

Notes: With a breadboard

Changes are fairly easy to implement

Components & values can be changed pretty easily

Tricks of Breadboarding
1) Keep Your Circuit Neat

Use short wires

Use short component leads

Organize your breadboard into
sections

Keeping your wires short

Reduces the noise picked up by
your wires

Reduces the chance of a wire
falling out

Helps you see the wiring in your
board

Helps when you need to modify
your breadboard circuit.

2. Color Code your Wires
Use red wires for +5V

Use black wires for ground

Use different colors for different types of
signals.

By color coding your wires,

You can quickly spot if a chip is missing
power and/or ground.

You can quickly see if a signal wire is
missing between two ICs

3. Use Potentiometers (2 max)

Potentiometers allow you to

Adjust voltages (0..5V)

Adjust resistors (0% to 100%)

Replacing a resistor with a potentiometer
allows you to tune your circuit without
having to replace components

Really useful when you get to PCB's

But...

A resistor costs $0.02

Potentiometers cost $1.55

5V 0V

Variable Voltage Variable Resistance

+5V

Vcc Reset

OutputDischarge

Threshold

Trigger

R1

R2

0.1uF

7

6

2

1

8 4

3

+5V

V1

V2

V3

100k

100k

Use Potentiometers (cont'd)

Example: Variable voltage

Allows you to adjust the voltage the comparitor switches

Allows you to adjsust the light level where the you turn on

+5V

1k

Light

Sensor 10k

pot

+5V

Va

Vb

Y

Va > Vb

+5V

Pots allow you to adjust a voltage

4. Breadboards & Test Points

Some things to think about when using a breadboard are:

How do you test your circuit?

What signal do you look at?

What should the signals look like?

What procedures do you use?

Note what signals you look at and record what you read. This affects your
upcoming PCB layout:

These same signals should be measured in simulation and on your PCB

Test points should be added to your PCB so that you have access to these
signals.

Test Point Example: Schmitt Trigger Circuit

TP1: 5V TP4: V(on) TP7: 0.2V means saturated

TP2: 0V TP5: 0V=off, 5V=on

TP3: V(sensor) TP6: Id = (5V - V6)/145

5V

145

Red

LED

1k
b

c

e

5V

R

1k

Voltage Divider
BJT Switch

Id = 20mA

when on
5V

179k10k

179k10k

Schmitt Trgger

+5V

TP3

TP4

TP5

TP7

TP1

TP2

TP6

5. Keep Your Breadboard

When done testing your breadboard, keep it together, intact (i.e. don't
cannibalize it for parts). If your PCB doesn't work properly, your (working)
breadboard circuit will be helpful in debugging what part of your PCB
works (and has similar signals), and which part does not work.

This means you'll need two of every part in ECE 401

One for your breadboard circuit, and

One for your PCB.

That's OK.

Breadboards with a Raspberry Pi Pico

Power can be provided three ways:

USB

- VBUS is powered by the USB
- Output is 5.0V
- Capable of 2A (USB limit)

VBUS (pin 40):

- Apply 5.0V to VBUS
- Bypass the USB

VSYS (pin 39):

- Provide 1.8V to 5.5V to VSYS.

Either way, the Pico geneates 3.3V

3.3V (pin 36) Outputs 3.3V

Capable of up to 300mA

GP0
GP1
GND
GP2
GP3

GP4
GP5
GND
GP6
GP7
GP8
GP9
GND
GP10
GP11
GP12
GP13
GND
GP14
GP15

VBUS
VSYS
GND

3V3_EN
3V3

VREF
GP28
GND
GP27
GP26
RUN

GP22
GND
GP21
GP20
GP19
GP18
GND

GP17
GP16

Pico

USB

Circuit

ground

+5V out

100mA max

1.8V to 5.5V

input

3.3V out

< 300mA
(not used in ECE 401)

(not needed if

using USB power)

Binary I/O:
GP0 to GP28 can be binary input or output

Binary Outputs

0V is logic 0

3.3V is logic 1

Can source or sink up to 12mA

Binary Inputs:

(0.0V - 0.8V) is logic 0

(2.0V to 3.5V) is logic 1

Do not connect 5.0V to the Pi-Pico's

input pins. This may damage the

Pi-Pico.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0

GP1

GND

GP2

GP3

GP4

GP5

GND

GP6

GP7

GP8

GP9

GND

GP10

GP11

GP12

GP13

GND

GP14

GP15

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28/AN2

GND

GP27/AN1

GP26/AN0

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17

GP16

Raspberry Pi Pico

Pi-Pico Example:

Connect your Pico to

Two push buttons (inputs),

A speaker (output), and

A red LED (output)

Schematics is shown on top

Corresponding breadboard
shown below

Red LED

(1.9V)

Speaker

(8 Ohms)

120

267

12mA

12mA

GP17

GP14

GP15

GP16

(internal

pull-up R)

(internal

pull-up R)

Pico

Momentary

Switch

X

Y

Thonny and MicroPython

Several programming languages are
available

Assembler

C

Python (MicroPython for a Pi-Pico)

among others.

In ECE 401, focus on Python

Installing Thonny
Locate Thonny 4.1.4

Download to PC

Connect to Pico board

Install Micropython

Click on the lower-right corner

Select your Pi-Pico chip

It will prompt you to install MicroPython if
this is the first time using your chip

Thonny: Command Window

Open Save Run Stop

Python is similar to Matlab:

The shell window is similar to
Matlab's command window

You can type commands directly in
the shell window.

Python like a calculator:

Shell

>>> a = 2

>>> b = 3

>>> c = 2*a + 3*b + 4

>>> print c

 17

Thonny: Script Window

Open Save Run Stop

The top window behaves like Matlab's
script window

Place code to execute here

Run this code by clicking on Run

Results show up in the shell window

a = 2

b = 3

c = 2*a + 3*b + 4

print(c)

Shell

>>>

 17

Binary I/O with Python

Python is a little different than Matlab.

Functions are included using the import command.

This makes that library available for use in your program.

Machine Library

Routines specific to the microcontroller you're using

Setting I/O pins to input

Output a square wave

import machine

Output

Button = machine.Pin(0, Pin.OUT)

Inputs

LED0 = machine.Pin(6, Pin.IN)

LED1 = machine.Pin(7, Pin.IN, Pin.PULL_UP)

LED2 = maching.Pin(8, Pin.IN, Pin.PULL_DOWN)

Float / Pull-Up / Pull-Down

Each input pin can have an internal resistor

Default: no resistor

Pull-Up: Pulled up to 3.3V with R

Pull-Down: Tied to ground with R

Pull-up is preferred for push buttons

Pressing the button ties input GPx to ground

Safer: No confusion on what logic 0 means

- ground

3.3V

50k - 65k

50k - 65k

GPX

GPX

GPX

No Resistors

Pull-Up

Pull-Down

Pi-Pico

Pi-Pico

Pi-Pico

Binary Outputs

Each output pin can be set to

Logic 1 (3.3V) or

Logic 0 (0V)

Set, Clear, Toggle commands are
available

read

Y = Button.value()

write

LED0.toggle() # toggle LED0 on/off

LED0.value(1) # set LED0

LED0.value(0) # clear LED0

LED0.low() # clear LED0

LED0.high() # set LED0

Time Library
Shows better in the video

Open Save Run Stop

The time library contains wait
routines:

sleep(x): pause x seconds. x can
be a floating-point number

sleep_ms(x): pause x
milliseconds. x must be an integer

sleep_us(x): pause x
microseconds. x must be an
integer.

Example: Every 500ms

Read the button values

Display their value in the shell
window

from machine import Pin

from time import sleep_ms

B0 = Pin(15, Pin.IN, Pin.PULL_UP)

B1 = Pin(16, Pin.IN, Pin.PULL_UP)

while(1):

 X = B0.value()
 Y = B1.value()

 print(X, Y)

 sleep_ms(500)

shell

MPY: soft reboot

1 1

0 1

1 1

1 0
1 0

Time Library (cont'd)

Blink and LED on and off every 2 seconds

Open Save Run Stop

from machine import Pin

from time import sleep

LED = Pin(17, Pin.OUT)

LED.value(1)

print('LED On')

sleep(2)

LED.value(0)
print('LED Off')

Shell

>>>

 LED On

 LED Off

If and While Statements
for-loops, while-loops, and if-statements are
really useful

Note: Python does not use end-statements

Indentation indicated which lines are within a loop

Empty loops are not allowed

pass behaves like a nop stement (do nothing)

Carriage returns and intendations have meaning

unlike C

4-spaces are standard per level

Anything is allowed - just be consistent

for i in range(0,6):
 d1 = i

 for j in

range(0,6):

 d2 = j

 y = d1 + d2

t = 0

dt = 0.01

while(t < 5):

 y = sin(t)

 t += dt

if(x < 3):

 y = 2*x + 4

elif(x < 5):

 y = 3 - 2*x

else:

 y = 0

Example: Turn on and off a light

Open Save Run Stop

GP15:

Input variable B0

Turn on the light

Logic 0 when pressed

GP14

Input variable B1

Turn off the light

Logic 0 when pressed

GP17

Output variable

Connected to an LED throgh R

(limit the current to <12mA)

from machine import Pin

from time import sleep_ms

B0 = Pin(15, Pin.IN, Pin.PULL_UP)

B1 = Pin(16, Pin.IN, Pin.PULL_UP)

LED = Pin(17, Pin.OUT)

Spkr = Pin(14, Pin.OUT)

while(1):

 X = B0.value()

 Y = B1.value()

 if(X == 0):

 LED.value(1)

 if(Y == 0):

 LED.value(0)

 print(X, Y, LED.value())

 sleep_ms(100)

Example: Turn on and off a light

Breadboard Results

Two-Key Piano:

Open Save Run Stop

PWM allows you to

Output a square wave

At a given frequency

- units Hz

At a given duty cycle

- duty_u16(0) = 0%
- duty_u16(0xFFFF) = 100%
- duty_ns(x) = x us on-time

This program plays

220Hz when B0 is pressed

260Hz when B1 is pressed

from machine import Pin, PWM

from time import sleep_ms

B0 = Pin(15, Pin.IN, Pin.PULL_UP)

B1 = Pin(16, Pin.IN, Pin.PULL_UP)

LED = Pin(17, Pin.OUT)

Spkr = PWM(Pin(14))
Spkr.freq(220)

Spkr.duty_u16(0)

while(1):

 X = B0.value()

 Y = B1.value()

 if(X == 0):

 Spkr.freq(220)

 Spkr.duty_u16(0x8000)

 elif(Y == 0):

 Spkr.freq(260)

 Spkr.duty_u16(0x8000)
 else:

 Spkr.duty_u16(0)

 sleep_ms(10)

For Loops

Open Save Run Stop

Similar to Matlab

Indentation indicates statements
within the for-loop

range(0,5)

Start at 0

Increment by one each loop

Continue while <5

- Slightly different than Matlab

range(0,5,2)

Step size = 2

[1,3,5,7,11]

Step through the array

for i in range(0,5):

 print(i, i*i)

for i in range(0,5, 2):

 print(i, i*i)

for i in [1,3,5,7]:

 print(i, i*i)

Shell

>>>

 0 0

 1 1

 2 4

 3 9

 4 16

 0 0

 2 4

 4 16

 1 1

 3 9

 5 25

 7 49

Counter in Python (take 1)

Open Save Run Stop

Using the previous hardware,
count how many times button
GP15 is pressed

from machine import Pin

from time import sleep

Button = Pin(15, Pin.IN, Pin.PULL_UP)

N = 0

while(1):
 while(Button.value() == 0):

 pass

 while(Button.value() == 1):

 pass

 N = N + 1

 print(N)
Shell

>>>

1

2
3

4

5

Subroutines in Python

In MicroPython, subroutines are defined by the keyword def, sort for define.
Ths simplest example would be a routine which

is passed nothing,

returns nothing, and

simply prints 'hello' when called:

When you press the run command

Python installs the subroutine defined as SayHello

It then runs the main routine (instruction following all of the definitions)

Open Save Run Stop

def SayHello():

 print('hello')

Start of main routine

SayHello()
shell

>>>

hello

Passing parameters to a subroutine

You can pass multiple parameters by simply including them in the definition

Open Save Run Stop

def Multiply(A, B):

 C = A * B

 print(A, ' * ', B, ' = ',C)

Start of main routine

Multiply(4,6)
shell

>>>
4 * 6 = 24

>>> Multiply(8,7)

8 * 7 = 56

Returning Numbers

Open Save Run Stop

You can return one number

You can return multiple
numbers

Received as an array, or

Received as four separate
variables

Example of Returning four Numbers

def Operate(A, B):

 C0 = A + B

 C1 = A - B

 C2 = A * B

 C3 = A / B

 return([C0, C1, C2, C3])

Start of main routine

X = Operate(4,6)

print(X)
shell

>>>

[10, -2, 24, 0.666667]

>>> C = Operate(8,7)

>>> print(C)

[15, 1, 56, 1.4142857]

>>> [a, b, c, d] = Operate(8,7)

>>>> print(a, b, c, d)

15, 1, 56, 1.4142857

Program Execution on Startup

Make your Pi-Pico blink three times at 2Hz on power-up

On for 100ms

Off for 400ms

repeat 3x

First, create a program (assume GP16 has an LED attached)

Open Save Run Stop

from machine import Pin

from time import sleep

LED = Pin(16, Pin.OUT)

for i in range(0,3):

 LED.value(1)

 sleep(0.1)

 LED.value(0)

 sleep(0.4)
Shell

Once this runs,

Go to File Save As

Select save to Raspberry Pi Pico

Save as main.py

On power up, this program will execute.

Result

On power up, the Pico's LED (top-left corner) blinks three times

For more information

ECE 476/676 Advanced Embedded Systems
https://www.BisonAcademy.com/ECE476/index.html

Also also
https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Homework #3:

Fill In Section #2: Requirements

Engineering Requirements

Gantt Chart

Engineering Requirements (partial list):

Must operate off of 5VDC

Must include at least one integrated circuit

Must include at least one LED with Id = 20mA +/- 5mA

Must include at least one NPN and one PNP transistor

Power supply = 9V battery (mark +/- polarity)

use a LM7805 regulator to drop 9V to 5V

Must have a reverse-polarity protection diode

Must have a 1/4 Watt 1-Ohm resistor in series with the power supply

(continued next page)

Update Section #3: Paper Design in your OneNote document

Include:

Your circuit schematics

Calculations for R's and C's

Calculations for voltages you exect to see.

Note: If you're using a microprocessor, assume the output pins are either 0V
or 3.3V.

