ECE401 Part II: Getting Started with Fusion 360 PCB Design

FUSION 360 Schematic Design

SD401-Worksheet Week 7

WK7 Assignment: FUSION 360 Schematic Worksheet

- Create an ECAD Schematic Drawing of a LED Blinker Circuit from the Schematic provided
- Save a file of the Parts list created from Fusion 360 in two separate versions, Text File, & HTML
- 1)Save the Parts List with the options of
 - a) List Type: Parts, Output Format: Text File, Save File as Group# Parts TEXT ex.SD401_Sp25_XX_Parts_Text
 - b) List Type: Values, Output Type: HTML, Save File as Group# Values_ HTML

Worksheet Objectives:

- ✓ Worksheet for PCB fabrication- Step 1
- Through Hole Components required- NO SMD'S
- Add Components to an ECAD Schematic Design
- ✓ Add Text, with different Font size
- ✓ Add Nets (air wires)
- ✓ Identify Layers
- ✓ Add Connectors from library
- Add PWR and GND
- ✓ Save and Print the ECAD Schematic document as an image and send via email
- ✓ Create and Print the Bill of Materials, in two different styles, showing parts vs values

Email the .pdf image of the Schematic, and the two variations of the Parts List, in a .zip folder

Send to jeffrey.erickson@ndsu.edu

Partlist exported from C:/Users/Tyler/AppData/Local/Temp/Neutron/ElectronFileOutput/6832/sch-0010a567-5775-4050-8bbf-21250c60f2e5/Untitled.sch at 2/9/2025 9:28 PM

Part Value Device Footprint Name Detailed Description CATEGORY COLOR DESCRIPTION MANUFACTURER MPN OPERATING_TEMP PART_STATUS RATING ROHS_COMPLIANT SERIES SUB-CATEGORY THERMALLOSS TOLERANCE TYPE VALUE VOLTAGE_RATING

C1 C_CHIP-0402(1005-METRIC) CAPC1005X60 Capacitor - Generic Capacitor

C2 C_CHIP-0402(1005-METRIC) CAPC1005X60 Capacitor - Generic Capacitor	
IC1 IC-555 LM555ND0008A D0008A	IC-555
JP1 JST-PH2 JSTPH2 JSTPH2 JSTPH2	JST-PH2
LED1 LED-BLUE LED_CHIP_BLUE-2012 LEDC2012X110N_B LED - Generic Opto-Electronic Blue	LED
LED-BLUE	
LED2 LED-RED LED_CHIP_RED-1608 LEDC1608X39N_R LED - Generic Opto-Electronic Red	LED
LED-RED	
R1 R-US_CHIP-0402(1005-METRIC) RESC1005X40 Resistor Fixed - ANSI Resistor	Fixed
R2 R-US_CHIP-0402(1005-METRIC) RESC1005X40 Resistor Fixed - ANSI Resistor	Fixed
R3 R-US_CHIP-0402(1005-METRIC) RESC1005X40 Resistor Fixed - ANSI Resistor	Fixed
R4 R-US_CHIP-0402(1005-METRIC) RESC1005X40 Resistor Fixed - ANSI Resistor	Fixed

FUSION360 Parts list downloaded and saved as a TEXT Document

Partlist exported from C:/Users/Tyler/AppData/Local/Temp/Neutron/ElectronFileOutput/6832/sch-0010a567-5775-4050-8bbf-21250c60f2e5/Untitled.sch at 2/9/2025 9:28 PM

Qty	Value	Device	Footprint	Name	Parts	Detailed D	escription	CATEGORY	COLOR	
	DESCRIPT	ION	MANUFAC	CTURER	MPN	OPERATIN	G_TEMP	PART_STAT	ΓUS	RATING
	ROHS_CO	MPLIANT	SERIES	SUB-CATE	GORY	THERMAL	LOSS	TOLERANO	Ε	TYPE
	VALUE	VOLTAGE	RATING							
2		C_CHIP-04	102(1005-№	1ETRIC)	CAPC1005	5X60	C1, C2	Capacitor	- Generic	Capacitor
4		R-US_CHI	P-0402(100	5-METRIC)	RESC1005	X40	R1, R2, R3	, R4	Resistor F	xed - ANSI
	Resistor Fixed									
1	IC-555	LM555ND	0008A	D0008A	IC1					
										IC-555
1	JST-PH2	JSTPH2	JSTPH2	JP1						
									JST-PH2	
1	LED-BLUE Blue	LED_CHIP	_BLUE-2013	2 LEDC2012	X110N_B	LED1	LED - Gen	eric	Opto-Elec	tronic LED
			LED-BLUE							
1	LED-RED Red	LED_CHIP	_RED-1608	LEDC1608	X39N_R	LED2	LED - Gene	eric	Opto-Elec	tronic LED

Step 3 is to turn this schematic into a PCB Design and save as a Gerber file.

	ECE 401	ECE 403/405		
PCB Size	2" x 2" 2″x3″	up to 60 square inches		
Mounting Holes	200 mils	200 - 250 mils		
Ground Plane	yes	yes		
Power Plane	yes	Depends upon design		
Trace Width: Power	40 mils	8 mils to 600 mils		
Other Traces	20 mils	8 mils to 600 mils		
Test Points	yes Through Hole	yes Surface Mount or Through Hole		
Components	Through Hole	any (0805, TSOP, DIP recommended)		
Silk Screen (top)	yes include date & group number	yes include date & group number		
Silk Screen (bottom)	no	yes if components placed on both sides of board		
Font Size	50 mil or larger height/10 for thickness	50 mil or larger height/10 for thickness		
Digikey Trace Width Calculator	optional	Longest trace with highest current		
LEDs	5mm Through Hole 10mA current Power, Signals	Any size, any number 0805 recommended Power, Signals		
Power	9V battery 7805 to step down to 5VDC	any		
Fuse	1 Ohm resistor Add reverse polarity protection	optional		
Microcontroller (if used)	Raspberry Pi-Pico	Any		

PCB Layout Tutorial Walkthrough – YouTube 0:04/4:38

Part 2 Creating Circuit Board Layout

PCB Layout Tutorial Walkthrough – YouTube 0:04/4:38

2D sim Components have been dragged into the Black square this is your PCB out line

PCB Layout Tutorial Walkthrough – YouTube 0:42/4:38

To route traces manually and then automatically

PCB Layout Tutorial Walkthrough – YouTube 2:32 mark

https://www.youtube.com/watch?v=VZZBEocoYDA 2:55/4:38

https://www.youtube.com/watch?v=VZZBEocoYDA 3:39/4:38

Two layer boards only top and bottom will be selected to auto route

Change the effort to high to get a better selection of solutions

Untitled* × + 0 0 Dettinu T E Untrod Untitled* Papio Bastianell RULES DRC/ERC MANUFACTURING AUTOMATE LIBRARY 0 + * € 30 I 法公司 =/= BOARD SHAPE * PLACE * ROUTE * FANOUT * QUICK ROUTE * RIPUP . REWORK * VEW . EDIT * LAYERS . POUR * MODIFY * SELECT 50 ml (1598 1048) O DESIGN MANAGER 16 Botton **4** Q Fite . View Devices 3 of 3 shown (1 selected) Device Sets ED1 Q. Search * *** Device Set <Bottom Side Device <Top Side Devices 10 of 10 shown (0 selected) Devices Q. Search • NSPECTOR + Nothing Selected ▼ Board Inf 0000 36.81mm 0.31mm 1555N \mathbb{S}^+ 6 O SELECTION FILTE R3 120 Types ED2 Lavers -Bas <Preset_Top: ► 4:23 / 4:38 • Auto Routing > 0 0 6 7 Q Q R # + 0 K

After choosing the solution with the least amount vias, the PCB is complete

SMD's are not allowed in ECE401 Designs, , SMDS's that show as RED need to be replaced with through Hole components first.- Highlight- right click- choose Package-Variant– Unroute the Design – change the parts and reroute.

Notice the Parts are all Through Hole Components, SMD Components can be changed by highlighting, right click and choose correct Variant RULES DRC/ERC DESIGN DOCUMENT MANUFACTURING LIBRARY AUTOMATION SIMULATION ## 20 ૃત્ 7 Ţ VIEW * MANUFACTURING * OUTPUTS * SWITCH 1 ◀ ▶ PLACE COMPONENTS DESIGN MANAGER 1 Top 100 mil (-922 4163) Click or press / to activate command line mode ₽ 0 Filter rowser ssembly Variant: Default Variant • ? iew: Groups 1 of 1 shown (0 selected) oups Q_ Search **v** ... Name Selectable Items [Ungrouped] 79 🖗 🏵 LEDARED S2B-XH-A 2-0 of 0 shown (0 selected) ems ₽1 Q_ Search v ...

PCB Manufacturing- Creating Gerber Files

CAM Files are now Gerber files

Change File name to SD403_S23_XX_Flasher and

Email to Jeffrey.Erickson@ndsu.edu for verification and

ordering

Part II: Getting Started with Fusion 360 PCB Design

This image shows the top view of a PCB design

- Take note of the 4 (white) holes in the corners- these are mounting holes to secure the PCB into an enclosure. (use 175mils diameter)
- JP1 is a 1x2 header, which shows the polarity of the battery leads when soldered to.
- Look at the uniformity of the Text, showing the Part designator- Part designator is more important than showing the Value of the part although both can be included
- Looking at the width of the traces- some are 40mils, the rest are 20 mils. 40mils for power, and 20mils for Data lines.
- Test points or TP's are labeled TP Bat+. TP GND, TP VREG etc.

EXTRAS: FUSION 360 has a Design documentation for every level of expertise

Product Documentation

Get Started in Fusion 360

Electronics / Tutorials / Tutorial: Create a PCB layout

- 😳 What's new
- 😳 Collaborate with Fusion Team
- Extensions
- C Tokens
- Assemblies
- 😳 Design: Sketch
- 😳 Design: Solid
- 😳 Design: Surface
- 😳 Design: Mesh
- 😳 Design: Form
- 😳 Design: Sheet Metal
- Electronics
 - Electronics overview
 - Projects and workflow
- Component libraries
- -----> 😳 Schematic design
 - → O Board layout preparation
 - Computer-aided manufacturing (CAM) support
 - 🗢 Tutorials
 - Tutorial: Manage electronic component libraries
 - O Tutorial: Create a schematic design

Tutorial: Create a PCB layout

The printed circuit board (PCB) layout process is both an art and a science. If you give a schematic to 100 different enginee PCB layouts back, all with unique twists.

In this tutorial, you start with a schematic design, and create a PCB using the following steps:

- Defining the PCB shape.
- Placing components.
- Routing the connections.

Schematic converted to a PCB for the double LED flasher circuit

Prerequisites

- Ensure you have completed the tutorial Create a schematic design.
- Ensure the design you created in the Create a schematic design tutorial is open and you are in the Schematic workspace

https://help.autodesk.com/view/fusion360/ENU/?guid=ECD-TUT-PCB-TOP-LEVEL

https://cart.jlcpcb.com/quote/gerberviewThree/?qs=fffb0b818 2344870b0bbd70c37469468_1_0_1_0_0.html

- Once Completed send your Gerber files to a on line service such as JLCPCB.com, here you will see your final image: highlight and send the above file using your url
- Click Top View Tab
- Click Bottom View Tab
- 2D image Tab
- 3D image Tab
- Layers Tab
- Layers Tab will show you multiple layers required to make a pcb gerber file
- Click DFM check to analyze your board for rules violations- click DFM Check

FUSION 360 PCB Design

SD401 Worksheet Week8

WK7 Assignment: From the worksheet FUSION 360 Schematics Part1.

- Create an ECAD Schematic Drawing of a LED Blinker Circuit
- Email the .pdf image, and two variations of the Parts List.

WK8 Assignment: LED Blinker PCB with Gerber Files Worksheet Part 2

 Using the schematic of the LED Blinker, create a PCB design using the components shown in the previous slide

Requirements: Through Hole Components are to be exclusively used for component selection

- Use only Through Hole Components
- Resistor Size:
- IC package: DIP, PDIP
- Power input is 9VDC 9V Battery
- DC input have two options:

1st option: use a JST 1x2 connector with 100mil/2.5mm pitch-JST Jack 2nd option uses the following DC jack as it is used in many SD Projects: Suggest using this connector from this Library: OPL-Connector Library, Variant-'DC-005',

description is Jack DC-005 (used in many SD Projects)

- DC input is 9Vdc need a 5V regulator.
 Voltage regulator & size LM7805 TO220 package (Variant)
- 10hm ¼ watt resistor as a fuse and reverse current diode for circuit protection (use a 1N4001,1N4002, or a 1N4003 PN junction diode
- Label the DC input polarity
- Board Size: 2000mil x 2000mil (2"x2")
- Text showing Group Designator, Project name: LED Blinker, Vs.# on front & back of PCB
- Text in an orderly manner
- Mounting holes: 4 corners
- Mounting Hole diameter: 175 mils
- May use any components from any Parts Library- Tutorial Fusion360 is just an option
- Parts may be placed on TOP Layer only
- Power traces 40 mils
- All other traces 20 mils
- GND plane required

Send the Gerber file which includes to drill files to any Gerber Viewer program, such as OSHPARK.com, https://www.gerber-viewer.com, or jlcpcb.com

Email the renamed .zip file folder to Jeffrey.erickson@ndsu.edu

Fusion 360 Help | Computer-aided manufacturing (CAM) support | Autodesk Creating Gerber files

