
Designs using a Raspberry Pi-Pico & Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GP0/TX0

GP1/RX0

GND

GP2

GP3

GP4/TX1

GP5/RX1

GND

GP6

GP7

GP8/TX1

GP9/RX1

GND

GP10

GP11

GP12/TX0

GP13/RX0

GND

GP14

GP15

VBUS

VSYS

GND

3.3V_EN

3.3V

GP28/AN2

GND

GP27/AN1

GP26/AN0

RUN

GP22

GND

GP21

GP20

GP19

GP18

GND

GP17/RX0

GP16/TX0

RP2040-Zero

5V

GND

3.3V

GP29/AN3

GP28/AN2

GN27/AN1

GP26/AN0

GP15

GP14

13 12 11 10 9

GP8

GP7

GP6

GP5

GP4

GP3

GP2

GP1

GP0

Raspberry Pi Pico

Introduction

In Senior Design I, many of the projects can be built just using digital logic and 555 timers. They could

also be built using a microcontroller.

Microcontrollers are just a tool: if the tool helps you do your job, use it. If not, don't use it. If you don't

use a microcontroller, you don't need to worry about

Designing hardware around the microcontroller,

Having to write and debug code, and

How to download that code.

If you are willing to learn how to do this, however, microcontrollers can give you a great deal of

flexibility in your design.

In this lecture, we going to cover

Hardware: How to wire up a Raspberry Pi-Pico so that you can make a light blink

Software: Programming a Pi-Pico using Thonny and Python

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 1 - July 30, 2024

Hardware:

Power: Power can be provided to a Pi-Pico several ways:

USB: The USB cable provides 5V to the Pi-Pico

VSYS (pin 39): Provide 1.8V to 5.5V to VSYS.

Regardless of how you power the Pi-Pico, two output voltages are available for the rest of your circuit:

VBUS (pin 40): Outputs 5V

3.3V (pin 36) Outputs 3.3V

Binary Outputs: Each general purpose I/O pin can be a binary input or binary output. When used as a

binary output, each pin can source or sink up to 12mA where

0V is logic 0

3.3V is logic 1

Binary Inputs: When used as an input, each I/O pin recognizes

(0.0V - 0.8V) as logic 0

(2.0V to 3.5V) as logic 1

Do not connect 5.0V to the Pi-Pico's input pins. This may damage the Pi-Pico.

Each input pin can also be connected to an internal pull-up or pull-down resistor.

For example, suppose you want to connect your Pi-Pico to some inputs and outputs:

Power: from the USB cable

Inputs: Push button connected to GP0

Outputs: Three LEDs connected to GP6, GP7, and GP8

The hardware could be:

3.3V
VSYS

GND

GP0

GP6

GP7

GP8

5.0V

5.0V 5.0V 5.0V

GP7 GP6

Rr Ry Rg

RbRbRb

Ib < 12mA

Ic

Button

internal

pull-up

Pi-Pico

Green

LED
Yellow

LED

Red

LED

Hardware for connecting a Pi-Pico to a push button (input) and there LEDs (output)
VSYS does not need to be connected to +5V if powered from the USB cable

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 2 - July 30, 2024

Software: Thonny and MicroPython

Several programming languages are available for a Pi-Pico, including

Assembler

C

Python (MicroPython for a Pi-Pico)

among others. In this lecture, we focus on MicroPython.

MicroPython is version of Python with reduced functionality so that it fits on a microcontroller like a

Pi-Pico. Python is very similar to Matlab:

Both are interpretive languages: Each line of code is executed with the results available to the user

as the program executes.

Both use similar syntax: Code that works in Matlab mostly works in Python

Both use a similar console: the user has a command window and a script window

If you start Thonny (the Python compiled used in this class), you'll see the following:

The top of the screen has icons for what you want to do including

- File New / Open / Save

- Run (run the program in the script window)

- Stop (stop the program that's currently executing - clear memory)

- Donate to Ukraine

The top window is the script window: These are programs you can execute

The bottom window is the shell window (command window in Matlab-speak).

The lower-right corner is the Pi-Pico you're connected to

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 3 - July 30, 2024

Python is similar to Matlab: you can type commands directly in the shell window. For example, you can

use Python like a calculator:

Open Save Run Stop

Shell

>>> a = 2
>>> b = 3
>>> c = 2*a + 3*b + 4
>>> print c
 17

You can also place this code in the script window and execute by pressing the Run button (green arrow)

Open Save Run Stop

a = 2
b = 3
c = 2*a + 3*b + 4
print(c)

Shell

>>>
 17

Python is also similar to Matlab in that you don't have to declare variables at the start of your program.

Instead, you can create them on the fly as in the above examples. In addition, Python will automatically

change the variable type on the fly.

For example, a and b are both integers in the above program. If c is the radio of a/b, c automatically

becomes a floating point number.]

Binary I/O with Python

Python is a little different than Matlab. For one thing, to use functions in a library, you have to use the

import command. This makes that library available for use in your program.

Two important libraries are the machine and time library.

Machine contains routines specific to the microcontroller you're using, such as setting I/O pins to

input, output setting the frequency and duty cycle for square waves, etc.

Time contains wait routines.

Within machine is the function Pin - which controls whether a pin is input or output. Options are:

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 4 - July 30, 2024

import machine

Output
Button = machine.Pin(0, Pin.OUT)

Inputs
LED0 = machine.Pin(6, Pin.IN)
LED1 = machine.Pin(7, Pin.IN, Pin.PULL_UP)
LED2 = maching.Pin(8, Pin.IN, Pin.PULL_DOWN)

The instruction machine.Pin() tells Python to use the routine Pin from library machine. This syntax

allows different libraries to have identical function names without causing a conflict. It does get a little

unwieldy, however. A shortcut assuming that there are no conflicts with the name Pin() is

from machine import Pin

Button = Pin(0, Pin.OUT)
LED0 = Pin(6, Pin.IN)
LED1 = Pin(7, Pin.IN, Pin.PULL_UP)
LED2 = Pin(8, Pin.IN, Pin.PULL_DOWN)

Line 3: This instruction tells Python that pin #0 is an output pin.

Logic 0 outputs 0V

Logic 1 outputs 3.3V

capable of souring or sinking up to 12mA.

Line 4 - 6: These instructions tell Python that pins 6, 7, and 8 are input pins.

Pin 6 has a floating input: it is up to the hardware to assure the voltage is either 0V or 3.3V

Pin 7 has an internal pull-up resistor. If left floating, pin 7 will read logic 1.

Pin 8 has an internal pull-down resistor. If left floating, pin 8 will read logic 0.

3.3V

50k - 65k 50k - 65kGPX

GPX

GPX

No Resistors Pull-Up Pull-Down

Pi-Pico Pi-Pico Pi-Pico

Input pins can be floating, pulled high, or pulled-low.

The value of I/O pins can be read and written to as (# is a comment in Python)

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 5 - July 30, 2024

read
Y = Button.value()

write

LED0.toggle() # toggle LED0 on/off

LED0.value(1) # set LED0

LED0.value(0) # clear LED0

LED0.low() # clear LED0

LED0.high() # set LED0

Note: For outputs,

0 is off (false)

anything else is on (true)

The time library contains wait routines:

sleep(x): pause x seconds. x can be a floating-point number

sleep_ms(x): pause x milliseconds. x must be an integer

sleep_us(x): pause x microseconds. x must be an integer.

For example, a program which turns on LED0 for two seconds would be:

Open Save Run Stop

from machine import Pin
from time import sleep

LED = Pin(6, Pin.OUT)

LED.value(1)
print('LED On')
sleep(2)
LED.value(0)
print('LED Off')

Shell

>>>
 LED On
 LED Off

Loops

Python also supports for-loops, while-loops, and if-statements like Matlab. The syntax in Python is

slightly different, however.

In Matlab, carriage returns and indentation is decorative. They help the programmer write

understandable code but have no impact on the program's execution.

In Python, carriage returns and indentation have meaning.

In Matlab, for-loops, while-loops, and if-statements are terminated with end statements

In Python, there are no end statements. Indentation tells you where the loop ends.

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 6 - July 30, 2024

The format for these statements in Python are as follows:

for i in range(0,5):
 print(i, i*i)

x = 3
while(x > 0):
 x -= 1

a = b = 4
if(a > b):
 print('a is greater than b')
elif(a == b):
 print('a is equal to b')
else:
 print('a is less than b')

Note that

Each loop starts with a statement that ends in a colon. This tells Python a loop is starting.

The following lines are indented. (four spaces is standard but Python doesn't care)

The end of the loop is indicated by removing the indentation

for-loops: A for-loop starts with the first number and increments. Some variations are:

range(a, b):

start at a,

end when you reach b or higher (different than Matlab)

For example, range(0,5) counts from 0 to 4

Open Save Run Stop

for i in range(0,5):
 print(i, i*i)

Shell

>>>
 0 0
 1 1
 2 4
 3 9
 4 16

If you add a third term, this is the step-size

Open Save Run Stop

for i in range(0,5, 2):
 print(i, i*i)

Shell

>>>
 0 0
 2 4
 4 16

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 7 - July 30, 2024

If you include an array, the for-loop steps through the array

Open Save Run Stop

for i in [1,3,5,7,11]:
 print(i, i*i)

Shell

>>>
 1 1
 3 9
 5 25
 7 49
 11 121

Example: Counter in Python (take 1)

As an example, write a Python program that counts how many times a button was pressed. Assume the

hardware is:

3.3V
VSYS

GND

GP0

GP6

GP7

GP8

5.0V

5.0V 5.0V 5.0V

GP7 GP6

Rr Ry Rg

RbRbRb

Ib < 12mA

Ic

Button

internal

pull-up

Pi-Pico

Green

LED
Yellow

LED

Red

LED

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 8 - July 30, 2024

In code:

Open Save Run Stop

from machine import Pin
from time import sleep

Button = Pin(0, Pin.IN, Pin.PULL_UP)
g = Pin(8, Pin.OUT)
y = Pin(7, Pin.OUT)
r = Pin(6, Pin.OUT)

N = 0

while(1):
 while(Button.value() == 0):
 pass
 while(Button.value() == 1):
 pass
 N = (N + 1) % 8
 g.value(N & 0x01)
 y.value(N & 0x02)
 r.value(N & 0x04)
 print(N, r.value(), y.value(), b.value())

Shell

>>>
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1

Subroutines in Python

In MicroPython, subroutines are defined by the keyword def, sort for define. Ths simplest example

would be a routine which

is passed nothing,

returns nothing, and

simply prints 'hello' when called:

When you press the run command

Python installs the subroutine defed as SayHello

It then runs the main routine (instruction following all of the definitions)

Open Save Run Stop

def SayHello():
 print('hello')

Start of main routine
SayHello()

shell

>>>
hello

In this example, note that

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 9 - July 30, 2024

The subroutine is called SayHello

Nothing is passes to this routine as indicated by the ()

The definition is terminated with a colon (:)

The code within the subroutine must be indented as per the Python standard

You can pass parameters to subroutines. For example, if you want to display numbers from 0..N, you

could write a routine like the following:

Open Save Run Stop

def CountToN(N):
 for i in range(1,N+1):
 print(i)

Start of main routine
CountToN(5)

Thonny Program Window

>>>
1
2
3
4
5

You can also pass multiple parameters by simply including them in the definition

Open Save Run Stop

def Multiply(A, B):
 C = A * B
 print(A, ' * ', B, ' = ',C)

Start of main routine
Multiply(4,6)

shell

>>>
4 * 6 = 24

>>> Multiply(8,7)
8 * 7 = 56

Subroutines in Python can only return zero or one variable. That variable could be an array, a matrix, or

a class object however - so that's not very limiting.

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 10 - July 30, 2024

Example where one number is returned:

Open Save Run Stop

Example of Returning One Number
def Multiply(A, B):
 C = A * B
 return(C0)

Start of main routine
X = Multiply(4,6)
print(X)

shell

>>>
24

>>> C = Multiply(8,7)
>>> print(C)
56

Example where four numbers are returned in a matrix:

Open Save Run Stop

Example of Returning four Numbers
def Operate(A, B):
 C0 = A + B
 C1 = A - B
 C2 = A * B
 C3 = A / B
 return([C0, C1, C2, C3])

Start of main routine
X = Operate(4,6)
print(X)

shell

>>>
[10, -2, 24, 0.666667]

>>> C = Operate(8,7)
>>> print(C)
[15, 1, 56, 1.4142857]

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 11 - July 30, 2024

Going back to the counter program, you could clean up the code with a subroutine:

Open Save Run Stop

from machine import Pin
from time import sleep

Button = Pin(0, Pin.IN, Pin.PULL_UP)
g = Pin(8, Pin.OUT)
y = Pin(7, Pin.OUT)
r = Pin(6, Pin.OUT)

def Display(X):
 g.value(X & 0x01)
 y.value(X & 0x02)
 r.value(X & 0x04)

N = 0
Display(N)

while(1):
 while(Button.value() == 0):
 pass
 while(Button.value() == 1):
 pass
 N = (N + 1) % 8
 Display(N)
 print(N, r.value(), y.value(), b.value())

Shell

>>>
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 12 - July 30, 2024

Program Execution on Startup

Make your Pi-Pico blink three times at 2Hz on power-up

On for 100ms

Off for 400ms

repeat 3x

First, create a program (assume GP16 has an LED attached)

Open Save Run Stop

from machine import Pin
from time import sleep

LED = Pin(16, Pin.OUT)

for i in range(0,3):
 LED.value(1)
 sleep(0.1)
 LED.value(0)
 sleep(0.4)

Shell

Once this runs,

Go to File Save As

Select save to Raspberry Pi Pico

Save as main.py

On power up, this program will execute.

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 13 - July 30, 2024

Appendix: MicroPython Syntax

Assigning values to variables:

X = 123 decimal 123
X = 0x123 hex 123
x, y, z = 1, 2, 3
X = [1,2,3,4,5] matrix or array
X = range(1,6) same matrix
X = [[1,2],[3,4]] 2x2 matrix

Operations

+ add
- subtract
* multiply
/ divide (result is usually a float)
// divide and round down (result is integer)
% modulus (remainder)
** raise to the power

X.append(6) append 6 to the end of array X

Logic Operations

& logical AND (bitwise)
| logical OR (bitwise)
^ logical XOR (bitwise)
>> shift right
<< shift left

comment statement

this is a comment statement

Conditionals:

X > Y
X < Y
X >= Y
X == Y
X != Y

Converting variable types:

int(X) convert to an integer, round down
round(X) round to nearest integer
float(X) convert to a floating point number

note: Python automatically adjusts variable types - you don't need to declare them like you do in C. For

example:

>>> X = 3 X is automatically treated like an integer

>>> Y = 4 Y is automatically treated like an integer

>>> Z = X/Y Z becomes a float (0.75)

>>> Z = X//Y Z is an integer (0)

print() Information can be sent to the shell window using a print() statement

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 14 - July 30, 2024

>>> print('Hello World')
Hello World

>>> X = 2**0.5
>>> print('X = ',X)
X = 1.414214

X = input() Information can be passed to your program using the input() statement. For example,

prompt the user to input a number for X:

>>> X = input('Type in a number')

This will result in X being a string (typing in Hello World is valid). If you want to receive the input as a

number, convert the result as:

>>> X = int(input('Type in a number'))
>>> X = float(input('Type in a number'))

When writing to the shell, numbers can be formatted if desired. Examples follow:

>>> msg = '27 in binary = {:b}'.format(27)
>>> msg
'27 in binary = 11011'

>>> msg = '27 in binary = {:b}'.format(27)
>>> msg
'27 in binary = 11011'
>>> msg = '27 in hex = {:X}'.format(27)
>>> msg
'27 in hex = 1B'

>>> msg = '0x2134 in decimal = {:d}'.format(0x1234)
>>> msg
'0x2134 in decimal = 4660'

>>> msg = '123.4567 rounded to 2 decimal = {:.2f}'.format(123.4567)
>>> msg
'123.4567 rounded to 2 decimal = 123.46'

>>> msg = '123.4567 rounded to 2 decimal = {:.2e}'.format(123.4567)
>>> msg
'123.4567 rounded to 2 decimal = 1.23e+02'

>>> msg = '79/255 = {:.2%}'.format(79/255)
>>> msg
'79/255 = 30.98%'

NDSU Desings using a Raspberry Pi-Pico & Python ECE 401

JSG - 15 - July 30, 2024

