
Designs using a PIC18F4620 and C

+5V

300

300

300

RB0

RC0

RC1

RC2

PIC18F2620

10k

Microcontroller

In Senior Design I, many of the projects can be built just using digital logic and 555 timers. They could

also be built using a microcontroller.

Microcontrollers are just a tool: if the tool helps you do your job, use it. If not, don't use it. If you don't

use a microcontroller, you don't need to worry about

Designing hardware around the microcontroller,

Having to write and debug code, and

How to download that code.

If you are willing to learn how to do this, however, microcontrollers can give you a great deal of

flexibility in your design.

In this lecture, we going to cover

Hardware: How to wire up a PIC chip so that you can make a light blink

Downloading: How to get your code onto the PIC chip, and

Coding: How to write simple C routines to make a light blink

I like to say that only engineers get excited when a light blinks. Getting a light to blink is a big deal. A

blinking light means

You were able to compile your code

You were able to download your code, and

Your code is running.

Once you get a light to blink, the rest is easy (sort of)...

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 1 - January 4, 2024

Hardware

There are tons of microcontrollers out there. In Senior Design I, only the PIC18F2620 is allowed for

several reasons:

You can find pre-written code online for just about everything for an Arduino and Raspberry Pi. A

degree in ECE should mean more than you know how to search the web.

We have a boot-loader for this chip (same as used in ECE 376)

We have experience using this chip (same as ECE 376)

We have a C compiler for this chip (same as ECE 376)

The only difference between the 40-pin version used in ECE 376 and the 28-pin version used in ECE 401

is

You have 22 I/O pins with the 28-pin version (vs. 33 I/O pins), and

PORTD and PORTE are not connected to any I/O pins with the 28-pin version

Otherwise, they're the same.

If you look up the data sheets for a PIC18F2620, the I/O pins can be found.

Pinouts for a PIC18F2620

When you design a system around a PIC processor, you need to identify the function of each I/O pin.

With this processor, there are three I/O ports: A, B, and C. If a single LED is connected to PortC pin 3,

the pin assignments could be something like this:

PORTC

7 6 5 4 3 2 1 0

TX RX - - LED - - -

Out In Output

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 2 - January 4, 2024

A schematic for this minimal setup:

+5V
+5V +5V

10k

Reset

20MHz

MCLR

OSC1

OSC2

Vdd

Vss

RC0

RC7/RX

RC6/TX

TX

RX

FTDI

FTDI

(alt)

LED

1k

1k
20

1

9

10

18

17

14

8, 19

6

10

14

9

+5V

TX

RX

5V

GND

+5V

Button

RB0
21

10k

217

318

RC6/TX

RC7/RX

Schematics for getting a PIC to run and drive an LED on PORTC pin 3.
The FTDI can be connected using the 18 pins around the edge as shown in the photo below

It can also be connected using the six connections at the edge of the board (shown in blue above)

Photo of breadboard for the above schematic

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 3 - January 4, 2024

Compiling C Code & Using MPLAB8

Step 1: Start with a working program. Typically, open a zip file and copy all of its contents to your

z-drive. I'd recomment something like

z:\ECE401\Clock

Step 2: Start MPLAB. Go to the program wizard (just like you did in assembler)

Select your device: PIC18F2620 (or 4620)

Select the Hi-Tech C Universal Toolsuite.

This tells the compiler to interprit your code as C code. Note that if this isn't an option under the Active

Toolsuite, there's a problem. This usually means the C compiler is in a read-only directory and needs the

permissions changed by a system administrator.

Assuming that works...

Change the path to your z-drive for where the files are located

Select the C program you want to compile (usually the name of the directory)

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 4 - January 4, 2024

You should get the following screen. If not, select View Project

You should get the following screen:

* important * Offset your code by 0x800

Your code needs to start at 0x800 - after the boot-loader.

Go to Project - Build Options - Project

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 5 - January 4, 2024

Under Linker, offset the code by 0x800

note: If your code worked yesterday and doesn't work today, it's probably you forgot to offset your

code by 0x800

Compile y our code just like you did in assembler

Project Build All (or F10)

You should get the following message

Memory Summary:
Program space used 76h (118) of 10000h bytes (0.2%)
Data space used 3h (3) of F80h bytes (0.1%)
EEPROM space used 0h (0) of 400h bytes (0.0%)
ID Location space used 0h (0) of 8h nibbles (0.0%)
Configuration bits used 0h (0) of 7h words (0.0%)

This tells you your code compiled and uses up 118 bytes (out of 64k), 3 bytes of RAM (out of 4k), etc.

This also creates some files

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 6 - January 4, 2024

Clock.lst

This shows how your C code converts to assembler. A section looks like the following

Clock.hex

This is the machine code you download to your processor

:04000000C7EF7FF0D7
:10FF8E00000E926E000E936E000E946E000E956E25
:10FF9E00000E966E0001FF6F0F0EC16E0001FF5135
:10FFAE00000E806E000E816E000E826E000E836E4D
:10FFBE00000E846E000E00010001FD6F000E0001A8
:10FFCE00FE6F010E00010001FD2500010001FD6F15
:10FFDE00000E00010001FE210001FE6FFDC083FF37
:10FFEE00836601D001D002D08228826EEAD700EF5C
:02FFFE0000F011
:00000001FF

Note that the reason we like C so much is

It compiles to assembler fairly directly

Meaning it is efficient, and

C has things like multiply, divide, loops, arrays.

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 7 - January 4, 2024

C-Coding

Once you have the hardware and MPLAB8 compiler ready, you can start coding. Each pin can be input

or output

Input: Read the buttons or other devices.

5V = logic 1

0V = logic 0

Output: Drive something like an LED

Logic 1 = 5V

Logic 0 = 0V

The program has to tell the PIC which it is. These are the TRIS registers where each bit determines the

I/O status of each pin. For example

TRISA = 0x00;

tells the PIC that all pins on PORTA are output (a zero is written to each bit of TRISA)

TRISB = 0xFF;

tells the PIC that all pins of PORTB are input (a one is written to each bit of TRISB)

TRISC = 0x0F;

tells the PIC that the first four pins of PORTC are output (0) and the last four pins are input (1).

The I/O ports can be addressed using their name

PORTA = 0x00; all pins on PORTA are 0V

PORTB = 0xFF; all pins on PORTB are 5V

PORTC = 0x01; pin #0 is 5V, the rest are 0V

You can also address each bit of a given port

RA0 = 1; Port A bit #0 is 5V, other pins are unchanged

RB3 = 0; Port B bit #3 is 0V

RC7 = 1; Port C bit #7 is 5V

Also also, you need to include the code

ADCON1 = 0x0F;

to use binary inputs and outputs. For more details on this, please refer to ECE 376 on analog inputs and

outputs.

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 8 - January 4, 2024

Program #1: Write 1, 2, 3 to Port A, B, C

C-Code

// Subroutine Declarations
#include <pic18.h>

// Subroutines

// Main Routine

void main(void)
{

 TRISA = 0;
 TRISB = 0;
 TRISC = 0;
 ADCON1 = 0x0F;

 PORTA = 1;
 PORTB = 2;
 PORTC = 3;

 while(1);

}

Compilation Results:

Memory Summary:
 Program space used 2Eh (46) of 10000h bytes (0.1%)
 Data space used 1h (1) of F80h bytes (0.0%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

This C code compiles into 23 lines of assembler (46 bytes: each instruction is two bytes)

Note: The while(1); statement at the end is a stop command. If you remove it, the program will execute

until it gets to the end of memory (32k instructions later) then it restarts at address 0x0000, which is

where the boot-loader is located.

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 9 - January 4, 2024

Program #2: Make RC0 blink at 220Hz

#include <pic18.h>

void main(void)
{
 unsigned int i;

 TRISA = 0;
 TRISB = 0;
 TRISC = 0;
 ADCON1 = 0x0F;
 PORTC = 0;

 while(1) {
 RC0 = !RC0;
 for(i=0; i<1419; i++);
 }

 }

The compilation results are:

Memory Summary:
 Program space used 6Ch (108) of 10000h bytes (0.2%)
 Data space used 3h (3) of F80h bytes (0.1%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

The number 1419 is found using trial and error. It sets up a wait routine to set the frequency to 220Hz

Actual frequency output on RC0 is 220.1Hz

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 10 - January 4, 2024

Program #3: Subroutines and Wait loops

Another nice feature of C is you have access to subroutines. Suppose you want to write a routine which

counts once per second. One way to do this is create a suboutine, Wait(), which waits N milliseconds.

The number 617 is found using trial and error: whatever it takes so that Wait(1000) waits 1000ms.

// Subroutine Declarations
#include <pic18.h>

// Subroutines

void Wait(unsigned int X)

{

 unsigned int i, j;

 for (i=0; i<X; i++)

 for (j=0; j<617; j++);

 }

// Main Routine

void main(void)
{
 TRISA = 0;
 TRISB = 0;
 TRISC = 0;
 ADCON1 = 0x0F;
 PORTC = 0;

 while(1) {
 PORTC += 1;
 Wait(1000);
 }
 }

Counting once per second. Current count is 13 (1101)

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 11 - January 4, 2024

Program #4: Counter

Beep every time button RB0 is pressed and released

After 10 button presses, turn on the light on RC0 for one second

// Subroutine Declarations
#include <pic18.h>

// Subroutines
void Wait(unsigned int X)
{
 unsigned int i, j;
 for (i=0; i<X; i++)
 for (j=0; j<617; j++);
 }

void Beep(void)
{
 unsigned int i, j;
 for (i=0; i<50; i++) {
 RA1 = !RA1;
 for (j=0; j<200; j++);
 }
 }

// Main Routine

void main(void)
{
 unsigned int COUNT;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 ADCON1 = 0x0F;

 COUNT = 0;

 while(1) {
 while(RB7);
 while(!RB7);

 Beep();

 COUNT += 1;
 PORTC = COUNT;

 if (COUNT >= 10) {
 RA0 = 1;
 Wait(1000);
 RA0 = 0;
 COUNT = 0;
 PORTC = COUNT;
 }
 }
 }

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 12 - January 4, 2024

Counting rising edges on RB7

RB7 is tied to ground through a 3.3k resistor (somewhat arbitrary)

When RB7 is connected to +5V, PORTC counts and a beep is sent to RA1

After 10 counts, RA0 goes high for one second

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 13 - January 4, 2024

C Language Summary

Character Definitions:

Name bits range

char 8 -128 to +127

unsigned char 8 0 to 255

int 16 -32,768 to +32,767

unsigned int 16 0 to 65,535

long 32 -2,147,583,648 to +2,147,483,647

unsigned long 32 0 to 4,294,967,295

float 32 3.4e-38 to 3.4e38

double 64 1.7e-308 to 1.7e+308

long double 80 3.4e-4932 to 3.4e+4932

Arithmetic Operations

Name Example Operation

+ 1 + 2 = 3 addition

- 3 - 2 = 1 subtraction

* 2 * 3 = 6 multiplication

/ 6 / 3 = 2 division

% 5 % 2 = 1 modulus

++ A++ use then increment

++A increment then use

-- A-- use then decrement

--A decrement then use

& 14 & 7 = 6 logical AND

| 14 | 7 = 15 logical OR

^ 14 ^ 7 = 9 logical XOR

>> 14 >> 2 = 3 shift right. Shift in zeros from left.

<< 14 << 2 = 56 shift left. Shift zeros in from right.

Defining Variables:

int A; A is an integer

int A = 3; A in an integer initialized to 3.

int A, B, C; A, B, and C are integers

int A=B=C=1; A, B, and C are integers, each initialized to 1.

int A[5] = {1,2,3,4,5}; A is an array initialized to 1..5. Note: A[0]=1.

Arrays:

int R[52]; Save space for 52 integers

int T[2][52]; Save space for two arrays of 52 integers.

note: The PIC18F4626 only has 3692 bytes of RAM, so don't get carried away with arrays.

General C Commands:

Conditional Expressions:

! not. !PORTB means the compliment of PORTB.
= assignment
== test if equal.

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 14 - January 4, 2024

> greater than
< less than
>= greater than or equal
!= not equal

IF Statement

if (condition expression)
{ statement or group of statements
 }

example: if PortB pin 0 is 1, then increment port C:

if (RB0==1) {
 PORTC += 1;
 }

IF - ELSE Statements

if (condition expression)
{ statement or group of statements
 }
else {
 alternate statement or group of statements
 }

Example: if PortB bit 0 is 1, then increment port C, else decrement port C:

if (RB0==1)
 PORTC += 1;
 }
else
 PORTC -= 1;
 }

SWITCH (CASE)

switch(value)
{
 case value: statement or group of statements
 case value: statement or group of statements
 defacult: statement or group of statements
 }

WHILE LOOP

while (condition is true) {
 statement or group of statements
 }

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 15 - January 4, 2024

DO LOOP

do {
 statement or group of statements
 } while (condition is true);

FOR-NEXT

for (starting value; do while true; changes) {
 statement or group of statements
 }

Infinite Loop

while(1) {
 statement or group of statements
 }

note: Zero is false. Anything other than zeros is true. while(130) also works for an infinite loop.

Subroutines in C:

To define a subroutine, you need to

Declare how this subroutine is called (typically in a .h file)

Declare what the subroutine is.

The format is

returned_variable_type = subroutine_name(passed_variable_types).

Example: Write a subroutine which returns the square of a number:

// Subroutine Declarations

int Square(int Data);

// Subroutines

int Square(int Data) {
 int Result;
 Result = Data * Data;
 return(Result);
 }

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 16 - January 4, 2024

Standard C Code Structure

So that others can modify your code more easily, a standard structure is to be used. This places all code

in the following order:

//----------------------------------
// Program Name
//
// Author
// Date
// Description
// Revision History
//---------------------------------

// Global Variables

// Subroutine Declarations

#include <pic.h> // where PORTB etc. is defined

// Subroutines

void interrupt IntServe(void){} // holder for interrupts (see week 8)

// Main Routine

void main(void)
{

 TRISA = 0; // all pins on PORTA are output
 TRISB = 0xFF; // all pins on PORTB are input
 TRISC = 0; // all pins on PORTC are output
 ADCON1 = 15; // PORTA and PORTE are binary (vs analog)
 PORTA = 1; // initialize PORTA to 1 = b00000001
 PORTC = 3; // initialize PORTC to 3 = b00000011

 while(1) {
 PORTC = PORTB; // copy whatever is input to PORTB to PORTC
 };
 }

// end of program

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 17 - January 4, 2024

Address Register
Name

Bit

7 6 5 4 3 2 1 0

0xF80 PORTA - - RA5 RA4 RA3 RA2 RA1 RA0

0xF81 PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

0xF82 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0

0xF83 PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0

0xF84 PORTE - - - - RE3 RE2 RE1 RE0

0xF85 LATA - - LATA5 LATA4 LATA3 LATA2 LATA1 LATA0

0xF86 LATB LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0

0xF87 LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0

0xF88 LATD LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0

0xF89 LATE - - - - LATE3 LATE2 LATE1 LATE0

0xF92 TRISA - - TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0

0xF93 TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0

0xF94 TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0

0xF95 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0

0xF96 TRISE - - - - TRISE3 TRISE2 TRISE1 TRISE0

0xF9D PEIE1 PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE

0xF9E PIR1 PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF

0xF9F IPR1 PSPIP ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP

0xFA0 PIE2 OSCFIE CMIE - EEIE BCLIE HLVDIE TMR3IE CCP2IE

0xFA1 PIR2 OSCFIF CMIF - EEIF BCLIF HLVDIF TMR3IF CCP2IF

0xFA2 IPR2 OSCFIP CMIP - EEIP BCLIP HLVDIP TMR3IP CCP2IP

0xFAB RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D

0xFAC TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D

0xFAD TXREG 8 bit register (0-255)

0xFAE RCREG 8 bit register (0-255)

0xFAF SPBRG 8 bit register (0-255)

0xFB0 SPBRGH 8 bit register (0-255)

0xFB1 T3CON T3RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3CCP1 TMR3CS TMR3ON

0xFB2 TMR3 16 bit register (0..65535)

0xFB4 CMCON C2OUT C1OUT C2INV C1INV CIS CM2 CM1 CM0

0xFB5 CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0

0xFB6 ECCP1AS ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0

0xFB7 PWM1CON PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0

0xFB8 BAUDCON ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN

0xFBA CCP2CON — — DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0

0xFBB CCPR2 16 bit register (0..65535)

0xFBD CCP1CON P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0

0xFBE CCPR1 16 bit register (0..65535)

0xFC0 ADCON2 ADFM — ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0

0xFC1 ADCON1 — — VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0

0xFC2 ADCON0 — — CHS3 CHS2 CHS1 CHS0 GODONE ADON

0xFC3 ADRES 16 bit register (0..65535)

0xFC5 SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN

0xFC6 SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0

0xFC7 SSPSTAT SMP CKE DA STOP START RW UA BF

0xFCA T2CON — T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0

0xFCB PR2 8 bit register (0-255)

0xFCC TMR2 8 bit register (0-255)

0xFCD T1CON T1RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 18 - January 4, 2024

0xFCE TMR1 16 bit register (0..65535)

0xFD0 RCON IPEN SBOREN — RI TO PD POR BOR

0xFD5 T0CON TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0

0xFD6 TMR0 16 bit register (0..65535)

0xFD8 STATUS — — — NEGATIVE OV ZERO DC CARRY

0xFF0 INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF

0xFF1 INTCON2 RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP

0xFF2 INTCON GIE PEIE TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF

NDSU Desings using a PIC18F4620 and C ECE 401

JSG - 19 - January 4, 2024

