ECE 376 - Homework #11

z-Transforms and Difital Filters - Due Monday, April 28th

LaPlace-Transforms

1) Assume X and Y are related by the following transfer function

25+7
s“+3s+15

a) What is the differential equation relating X and Y?
Cross multiply
(s2+3s+15)Y=02s+7)X
'sy' means 'the derivative of Y'
D138 415y =24+ 7x
You can also write this using prime-notation (each prime means a derivative)

v/ +3y" +15y=2x"+7Tx

b) Find y(t) assuming

x(t) =2+ 3 sin(41)
Treat this as two separate problems:
x1(H)=2

s=0

X1=2

$2435+15

Y, = (2—”) N (2) =0.9333

y1() =0.9333
x2(%) = 3 sin(4¢)

s =j4

X=0-,3

25+7
s“4+35+15 s

y2(f) = —1.9034 cos(41) + 1.8414 sin(41)
Y(£) = y1 + > = 0.9333 — 1.9434 cos(47) + 1.8414 sin(41)

(0—j3)=-1.9034—j1.8414
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z-Transforms

2) Assume X and Y are related by the following transfer function

[ 025(z+0.5)
Y= ((z—O.S)(z—OJ)) X

a) What is the difference equation relating X and Y?

Multiply out and cross multiply
(z—0.8)(z=0.7)Y =0.25(z+ 0.5)X
(z>—1.5z+0.56)Y =0.25(z+ 0.5)X

Note that 'zY' means 'the next value of Y'

y(k+2) — 1.5y(k+ 1) +0.56y(k) = 0.25(x(k + 1) + 0.5x(k))

If you don't like dealing with future values, do a change of variables (or a time shift) to write as

y(k)—1.5y(k—1)+0.56y(k —2) = 0.25(x(k— 1) + 0.5x(k - 2))

Both answers are correct

b) Find y(t) assuming a sampling rate of T = 0.01 second
x() =2+ 3 sin(4¢)

Use superposition treating this as two separate problems

x1(H)=2
s=0
z=eT=
X =2
Y, =12.50

yi(f) = 12.50



x2(2) = 3 sin(4?)

s =j4
7= e'T = /004
X2 = O —]3

_(0.25(40.5) .
Y2 - (m) 7=¢/0-04 ' (O _J3)
Y, = —5.4954 — j17.4973
y2(f) = =5.4954 cos(4t) + 17.4973 sin(41)

y(1) =yi(t) +y2(0)
y(t) = 12.50 — 5.4954 cos(4t) + 17.4973 sin(4¢)

¢) Find y(t) assuming
x(1) = 3u(t)
Use z-transforms
Y= ( 0.25(z+0.5) ) ( 3z )
(z-0.8)(z-0.7) ) \ z-1

Pull out a z and do a partial fraction expansion

_ (om0
Y= ((Z—l)(Z—O.S)(z—OJ)) z

([ 1875 —48.75 30

Y= (( 1 ) + ( 038 ) + (z—0.7))z
_ (18752 —48.757 30

Y= ( z—1z) +( z—o.sz) + (z—og)

Take the inverse z-transform

y(k) = (18.75 —48.75(0.8)" + 30(0.7)") u(k)



Filters in the z-Plane

3) Assume G(s) is a low-pass filter with real poles:

_ 500
G(S) - ((s+1)(s+6)(s+12))

Design a digital filter, G(z), which has approximately the same gain vs. frequency as G(s). Assume a
sampling rate of T = 0.01 second.

Plot the gain vs. frequency for both filters from 0 to 50 rad/sec.

Use the mapping from the s-plane to the z-plane of

z=e7

s=-1 z=¢T=0.9900

s=-6 z=e7=0.9418

s=—12 z=e7=0.8869
So G(z) is of the form

_ k
G(2) = ((z—0.99)(z—0.9418)(z—0.8869))

Pick k to match the DC gain

DC = (L) = 6.9444
s=0

(s+1)(s+6)(s+12)

DC = ( ] ) = 6.9444

(z—0.99)(z—0.9418)(z—0.8869) —1

k=10.0004076

SO

_ 0.0004076
G(z)= ((z—0.99)(z—0.9418)(z—0.8869))

Note: G(z) has extra delay relative to G(s). You can remove this delay by adding z-terms in the
numerator to remove this delay. Another valid representation for G(z) would be

_ 0.00040762° )

G(2) = ((z—0.99)(z—0.9418)(z—0.8869)

The extra z-terms in the numberator reduce the delay of G(z) but have no impact on the frequency
response.




Plotting the gain vs. frequency in Matlab

>>
>>
>>

>>
>>
>>
>>
>>
>>

w = [0:0.01:20]";
s = J*w;
Gs = 500 ./ ( (s+1l).*(s+6).*(s+12) );

T = 0.01;

z exp (s*T);

Gz = 0.0004076 ./ ( (z-0.99).*(z-0.9481).*(z-0.8869) );
plot (w,abs (Gs), 'b',w,abs (Gz), 'r")

xlabel ('Frequency (rad/sec)');
ylabel ('Gain')

The two filters have the same gain vs. frequency. They're the same filter

Gain

Frequency (rad/sec)

G(s) (blue) and G(z) (red)
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4) Assume G(s) is the following band-pass filter:
G(s) = ( 500 )

(s+10)(s2+25+400)

Design a digital filter, G(z), which has approximately the same gain vs. frequency as G(s). Assume a
sampling rate of T = 0.01 second.

Plot the gain vs. frequency for both filters from 0 to 50 rad/sec.

Same as before: Map from the s-plane to the z-plane as z = exp(sT)

s=-10 z=¢eT=0.9048
s =—1+;19.9750 z=eT=0.9704 +j0.1964
s =—1-719.9750 z=eT=0.9704 —j0.1964

So, G(z) is of the form

60 =( " )
(z-0.9048)(z—0.9704+j0.1964)(z—0.9704—j0.1964)

Pick k to match the gain at some frequecy. Pick DC

DC:(*) ~0.125
(s+10)(s*+2s5+400) =0

DC=( k ) =0.125

(z—0.9048)(z—0.9704+j0.1964)(z—0.9704—j0.1964) —1

k =0.0004695

SO

Gl2) = ( 0.0004695 )
(2=0.9048)(z=0.9704+/0. 1964)(z—0.9704—0.1964)

You can also write this as

G( Z) — 0.0004695
(z—0.9048) (zz—l .9407z+0.9802)



Plotting the frequency response of G(s) and G(z)

>> T = 0.01;

>> sl = -10;

>> s2 = —-1+19.97501;

>> s3 = conj(s2);

>> z1 = exp(sl*T);

>> z2 = exp(s2*T);

>> z3 = exp(s3*T);

>> s = 0;

>> DCs = 500 / ( (s—sl)*(s—-s2)*(s-s3) )
DCs = 0.1250

>> z = 1;

>> DCz =1 / ( (z—-zl)*(z—2z2)*(z-23) );
>> k = DCs / DCz;

>> k = abs (k)

k = 4.6952e-004

>> w = [0:0.01:40]"

>> s = j*w;

>> Gs = 500 ./ ( (s—-sl).*(s—-s2).*(s—-s3)
>> T = 0.01;

>> z = exp(s*T);

>> Gz =k ./ ( (z-zl).*(z-22).*(z-23) );
>> plot (w,abs(Gs), 'b',w,abs (Gz), 'r")

>> xlabel ('Frequency (rad/sec)');

>> ylabel ('Gain')

a7

)i

06—

Gain

The gain is essentially the same:

5 10 15 20
Frequency (rad/sec)

Gain of G(s) (blue) and G(z) (red)

the two filters are equivalent
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5) Write a C program to implement the digital filter, G(z)

0004
Y= 0.0004695 X
(z—0.9048)(z2—1.9407z+0.9802)

Multiply out the denominator
>> poly([zl,z2,2z3])

ans = 1.0000 -2.8456 2.7362 -0.8869

0.0004695
v=( )x
23-2.84567242.73622—-0.8869

Cross multiply
(z° —2.8456z% +2.73627—0.8869)Y = 0.0004695X

Convert to a difference equations
v (k+3)-2.8456y (k+2)+2.7362y (k+1)-0.8869y (k) =0.0004695x (k)

Shift by three (do a change of variable)
y (k) -2.8456y (k-1)+2.7362y (k-2)-0.8869y (k-3)=0.0004695x (k-3)

Solve for y(k)
y(k) = 2.8456y (k-1)-2.7362y (k-2)+0.8869y (k-3)+0.0004695x (k-3)

That's your program

while (1) {
x3 = x2;
x2 = x1;
x1 = x0;
x0 = A2D_Read(0);
y3 = y2;
v2 = yl;
vl = y0;
y0 = 2.8456*yl - 2.7362*y2 + 0.8869*y3 + 0.0004695*x3;
D2A(y0);

Wait_10ms () ;
}



FIR Filters

6) Find the impulse response of a filter with the following gain vs. frequency:
« hint: Approximate the waveform by adding up ideal low-pass filters

Gain

0 1 2 3 4 5 6 7 8 9
Frequency (rad/sec)

Note that the impulse response of an ideal low pass filter with a DC gain of 1.00 and a corner at 'a’
rad/sec is

t

LPF(a) = ()

Implement this using step functions

3LPF(2)+ LPF(6)— LPF(4)

e =3(5:) (202) + () () - () ()

The impulse response looks like this:

>> t = [-20:0.01:20]"' + le-6;
>> G = 3*sin(2*t)./(t) + sin(6*t)./t - sin(4*t)./t;
>> G =G / (2*pi);

>> plot (t,G)
>> xlabel ('Time (seconds)');
>> ylabel ('Volts')




7) Design a FIR filter to approximate this impulse reaponse. Include in your design

The sampling rate: 200ms (gives 200 points to represent g(t))
The length of the window: 40 seconds

The impulse response of your FIR fitler

Delay = 20 seconds.

>>
>>
>>
>>
>>
>>
>>
>>
>>

0.6

0.2
1]

T =0.2;

t = [-20:T:20]"' + le-6;

H = 3*sin(2*t)./(t) + sin(6*t)./t — sin(4*t)./t;
DC = sum(H);

H=H*3 / DC;
plot (£+20,H) ;

x1im([0,40])
xlabel ('Time (seconds)');
ylabel ('Volts'")

5 10 15 20 28 30 e 40
Tirne (seconds)

Impuse Response of FIR filter



8) Plot the gain vs. frequency of your filter

T =0.2;
t = [-20:T:20]"' + le-6;
H = 3*sin(2*t)./(t) + sin(6*t)./t — sin(4*t)./t;

DC = sum(H);
H=H * 3/DC;

w = [0:0.01:10]";
s = J*w;

z = exp(s*T);

Gw = 0*w;

for i=1l:length(t)
Gw = Gw + H(i) * z.~(1l-1);
end

plot (w, abs (Gw))

345

Gain

Fraguency (radfsec)

Frequency Response of FIR filter
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