
ECE 376 - Homework #11

z-Transforms and Difital Filters -  Due Monday, April 28th

LaPlace-Transforms

1) Assume X and Y are related by the following transfer function

Y = 


2s+7

s2+3s+15


X

a)  What is the differential equation relating X and Y?

Cross multiply

(s2 + 3s + 15)Y = (2s + 7)X

'sy' means 'the derivative of Y'

d2y

dt2
+ 3

dy

dt
+ 15y = 2

dx

dt
+ 7x

You can also write this using prime-notation (each prime means a derivative)

y + 3y + 15y = 2x + 7x

b)  Find y(t) assuming

x(t) = 2 + 3 sin(4t)

Treat this as two separate problems:

x1(t) = 2

s = 0

X1 = 2

Y1 = 


2s+7

s2+3s+15




s=0

⋅ (2) = 0.9333

y1(t) = 0.9333

x2(t) = 3 sin(4t)

s = j4

X = 0 − j3

Y2 = 


2s+7

s2+3s+15




s=j4

⋅ (0 − j3) = −1.9034 − j1.8414

y2(t) = −1.9034 cos(4t) + 1.8414 sin(4t)

y(t) = y1 + y2 = 0.9333 − 1.9434 cos(4t) + 1.8414 sin(4t)



z-Transforms

2)  Assume X and Y are related by the following transfer function

Y = 


0.25(z+0.5)

(z−0.8)(z−0.7)


X

a)  What is the difference equation relating X and Y?

Multiply out and cross multiply

(z − 0.8)(z − 0.7)Y = 0.25(z + 0.5)X

(z2 − 1.5z + 0.56)Y = 0.25(z + 0.5)X

Note that 'zY' means 'the next value of Y'

y(k + 2) − 1.5y(k + 1) + 0.56y(k) = 0.25(x(k + 1) + 0.5x(k))

If you don't like dealing with future values, do a change of variables (or a time shift) to write as

y(k) − 1.5y(k − 1) + 0.56y(k − 2) = 0.25(x(k − 1) + 0.5x(k − 2))

Both answers are correct

b)  Find y(t) assuming a sampling rate of T = 0.01 second

x(t) = 2 + 3 sin(4t)

Use superposition treating this as two separate problems

x1(t) = 2

s = 0

z = esT = 1

X1 = 2

Y1 = 


0.25(z+0.5)

(z−0.8)(z−0.7)




z=1

⋅ (2)

Y1 = 12.50

y1(t) = 12.50



x2(t) = 3 sin(4t)

s = j4

z = esT = e j0.04

X2 = 0 − j3

Y2 = 


0.25(z+0.5)

(z−0.8)(z−0.7)




z=ej0.04
⋅ (0 − j3)

Y2 = −5.4954 − j17.4973

y2(t) = −5.4954 cos(4t) + 17.4973 sin(4t)

y(t) = y1(t) + y2(t)

y(t) = 12.50 − 5.4954 cos(4t) + 17.4973 sin(4t)

c)  Find y(t) assuming

x(t) = 3u(t)

Use z-transforms

Y = 


0.25(z+0.5)

(z−0.8)(z−0.7)






3z

z−1



Pull out a z and do a partial fraction expansion

Y = 


0.75(z+0.5)

(z−1)(z−0.8)(z−0.7)


 z

Y = 




18.75

z−1

 + 

−48.75

z−0.8

 + 

30

z−0.7



 z

Y = 


18.75z

z−1

 + 

−48.75z

z−0.8

 + 

30z

z−0.7



Take the inverse z-transform

y(k) = 
18.75 − 48.75(0.8)

k
+ 30(0.7)

k 
 u(k)



Filters in the z-Plane

3)  Assume G(s) is a low-pass filter with real poles:

G(s) = 


500

(s+1)(s+6)(s+12)




Design a digital filter, G(z), which has approximately the same gain vs. frequency as G(s).  Assume a

sampling rate of T = 0.01 second.

Plot the gain vs. frequency for both filters from 0 to 50 rad/sec.

Use the mapping from the s-plane to the z-plane of

z = esT

s = −1 z = esT = 0.9900

s = −6 z = esT = 0.9418

s = −12 z = esT = 0.8869

So G(z) is of the form

G(z) = 


k

(z−0.99)(z−0.9418)(z−0.8869)




Pick k to match the DC gain

DC = 


500

(s+1)(s+6)(s+12)




s=0

= 6.9444

DC = 


k

(z−0.99)(z−0.9418)(z−0.8869)




z=1

= 6.9444

k = 0.0004076

so

G(z) = 


0.0004076

(z−0.99)(z−0.9418)(z−0.8869)



Note:  G(z) has extra delay relative to G(s).  You can remove this delay by adding z-terms in the

numerator to remove this delay.  Another valid representation for G(z) would be

G(z) = 


0.0004076z2

(z−0.99)(z−0.9418)(z−0.8869)



The extra z-terms in the numberator reduce the delay of G(z) but have no impact on the frequency

response.



Plotting the gain vs. frequency in Matlab

>> w = [0:0.01:20]';
>> s = j*w;
>> Gs = 500 ./ ( (s+1).*(s+6).*(s+12) );

>> T = 0.01;
>> z = exp(s*T);
>> Gz = 0.0004076 ./ ( (z-0.99).*(z-0.9481).*(z-0.8869) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r')
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain')

The two filters have the same gain vs. frequency.  They're the same filter 

G(s) (blue) and G(z) (red)



4)  Assume G(s) is the following band-pass filter:

G(s) = 


500

(s+10)(s2+2s+400)




Design a digital filter, G(z), which has approximately the same gain vs. frequency as G(s).  Assume a

sampling rate of T = 0.01 second.

Plot the gain vs. frequency for both filters from 0 to 50 rad/sec.

Same as before:  Map from the s-plane to the z-plane as z = exp(sT)

s = −10 z = esT = 0.9048

s = −1 + j19.9750 z = esT = 0.9704 + j0.1964

s = −1 − j19.9750 z = esT = 0.9704 − j0.1964

So, G(z) is of the form

G(z) = 


k

(z−0.9048)(z−0.9704+j0.1964)(z−0.9704−j0.1964)




Pick k to match the gain at some frequecy.  Pick DC

DC = 


500

(s+10)(s2+2s+400)




s=0

= 0.125

DC = 


k

(z−0.9048)(z−0.9704+j0.1964)(z−0.9704−j0.1964)




z=1

= 0.125

k = 0.0004695

so

G(z) = 


0.0004695

(z−0.9048)(z−0.9704+j0.1964)(z−0.9704−j0.1964)




You can also write this as

G(z) =





0.0004695

(z−0.9048)z
2−1.9407z+0.9802








Plotting the frequency response of G(s) and G(z)

>> T = 0.01;
>> s1 = -10;
>> s2 = -1+19.9750i;
>> s3 = conj(s2);

>> z1 = exp(s1*T);
>> z2 = exp(s2*T);
>> z3 = exp(s3*T);

>> s = 0;
>> DCs = 500 / ( (s-s1)*(s-s2)*(s-s3) )
DCs =    0.1250

>> z = 1;
>> DCz = 1 / ( (z-z1)*(z-z2)*(z-z3) );
>> k = DCs / DCz;
>> k = abs(k)
k =  4.6952e-004

>> w = [0:0.01:40]';
>> s = j*w;
>> Gs = 500 ./ ( (s-s1).*(s-s2).*(s-s3) );

>> T = 0.01;
>> z = exp(s*T);
>> Gz = k ./ ( (z-z1).*(z-z2).*(z-z3) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r')
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain')
 

Gain of G(s) (blue) and G(z) (red)

The gain is essentially the same:  the two filters are equivalent



5)  Write a C program to implement the digital filter, G(z)

 Y =





0.0004695

(z−0.9048)z
2−1.9407z+0.9802




X

Multiply out the denominator

>> poly([z1,z2,z3])

ans =    1.0000   -2.8456    2.7362   -0.8869

Y = 


0.0004695

z3−2.8456z2+2.7362z−0.8869


X

Cross multiply

(z3 − 2.8456z2 + 2.7362z − 0.8869)Y = 0.0004695X

Convert to a difference equations

y(k+3)-2.8456y(k+2)+2.7362y(k+1)-0.8869y(k)=0.0004695x(k)

Shift by three (do a change of variable)

y(k)-2.8456y(k-1)+2.7362y(k-2)-0.8869y(k-3)=0.0004695x(k-3)

Solve for y(k)

y(k) = 2.8456y(k-1)-2.7362y(k-2)+0.8869y(k-3)+0.0004695x(k-3)

That's your program

while(1) {

x3 = x2;
x2 = x1;
x1 = x0;
x0 = A2D_Read(0);

y3 = y2;
y2 = y1;
y1 = y0;

y0 = 2.8456*y1 - 2.7362*y2 + 0.8869*y3 + 0.0004695*x3;

D2A(y0);

Wait_10ms();
}



FIR Filters

6)  Find the impulse response of a filter with the following gain vs. frequency:

hint:  Approximate the waveform by adding up ideal low-pass filters

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Frequency (rad/sec)

Gain

Note that the impulse response of an ideal low pass filter with a DC gain of 1.00 and a corner at 'a'

rad/sec is

LPF(a) =
1

2π




sin(at)

t



Implement this using step functions

3LPF(2) + LPF(6) − LPF(4)

G(jω) = 3
1

2π






sin(2t)

t

 + 

1

2π






sin(6t)

t

 − 

1

2π






sin(4t)

t



The impulse response looks like this:

>> t = [-20:0.01:20]' + 1e-6;
>> G = 3*sin(2*t)./(t) + sin(6*t)./t - sin(4*t)./t;
>> G = G / (2*pi);
>> plot(t,G)
>> xlabel('Time (seconds)');
>> ylabel('Volts')

 



7)  Design a FIR filter to approximate this impulse reaponse.  Include in your design

The sampling rate:  200ms (gives 200 points to represent g(t))

The length of the window:  40 seconds

The impulse response of your FIR fitler

Delay = 20 seconds.

>> T = 0.2;
>> t = [-20:T:20]' + 1e-6;
>> H = 3*sin(2*t)./(t) + sin(6*t)./t - sin(4*t)./t;
>> DC = sum(H);
>> H = H * 3 / DC;
>> plot(t+20,H);
>> xlim([0,40])
>> xlabel('Time (seconds)');
>> ylabel('Volts')

Impuse Response of FIR filter



8)  Plot the gain vs. frequency of your filter

T = 0.2;
t = [-20:T:20]' + 1e-6;
H = 3*sin(2*t)./(t) + sin(6*t)./t - sin(4*t)./t;
DC = sum(H);
H = H * 3/DC;
 
w = [0:0.01:10]';
s = j*w;
z = exp(s*T);
 
Gw = 0*w;
for i=1:length(t)
    Gw = Gw + H(i) * z.^(1-i);
end
 
plot(w,abs(Gw))

Frequency Response of FIR filter


