
ECE 376 - Homework #8
Timer2 Interrupts

Measuring Time with Timer2

Write a program to measure your reflex time with a resolution of 0.1ms using Timer2 interrupts.

Press and release RB0 to start the game

This geneates a random number from 3.0000 to 7.0000 seconds.

Start decrementing time down to 0.0000 seconds using Timer2 interrupts

When you get to 0.0000, turn on the lights on PORTA

As soon as the lights turn on, press RB0 again

The time delay between when the lights turned on and you pressed RB0 is your reflex time.

1) Give a flow chart for this program

PORTB = Input

Start

PORTA/B/D = Output

Timer2 = 0.1ms

Wait for RB0

Press & Release

Wait 3-7 sec

Turn on lights

TIME = 0

RB0 Pressed?

Record & Display

TIME

Turn off lights

Every 100us

Timer2

Increment TIME

Exit

0.1ms

2) Write the corresponding C code

Interrupt Service Routine:

// Global Variables
unsigned long int TIME;

// High-priority service
void interrupt IntServe(void)
{
 if (TMR2IF) {
 RC0 = !RC0;
 TIME = TIME + 1;
 TMR2IF = 0;
 }
}

Initialization

// set up Timer2 for 0.11ms
 T2CON = 0x4D;
 PR2 = 24;
 TMR2ON = 1;
 TMR2IE = 1;
 TMR2IP = 1;
 PEIE = 1;

// turn on all interrupts
 GIE = 1;

Main Loop

 while(1) {
 PORTA = 0;
 PORTE = 0;
 while(!RB0);
 RE0 = 1;
 while(RB0) DELAY = (DELAY + 1)%4000;
 Wait_ms(DELAY + 3000);
 PORTA = 0xFF;
 TIME = 0;
 while(!RB0);
 dT = TIME;
 LCD_Move(1,8); LCD_Out(dT, 7, 4);
 Wait_ms(1000);
 }
 }

Memory Summary:
 Program space used B02h (2818) of 10000h bytes (4.3%)
 Data space used 37h (55) of F80h bytes (1.4%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

3) Validation: Collect data to verify your code works

Timer2 is interrupting every 0.1ms

RC0 measures at 5007Hz

Timer2 is running at 99.86us (0.14% error)

The delay is random from 3 to 7 seconds

Time delay for five runs were:

{3.234s, 4.022s, 5.103s, 6.705s, 3.241s, 6.864s}

All times were in the range of (3.000, 7.000) seconds

The time from when the lights turn on and you press RB0 is recorded correctly

Wait five seconds

time displayed was 4.6546 seconds

Wait nine seconds

time displayed was 8.4687 seconds

Timer appears to be correct

4) Student-t Test: Once your program works, collect 2+ measurements of your reflex time.

From your data, compute the 90% confidence interval for your reflex time.

Measure my reflex times:

{0.1749, 0.1688, 0.2415, 0.2143, 0.1793, 0.1858, 0.1880}

From Matlab, the mean and standard deviation are:

>> Data = [0.1749, 0.1688, 0.2415, 0.2143, 0.1793, 0.1858, 0.1880];
>> x = mean(Data)
x = 0.1932

>> s = std(Data)
s = 0.0258

From StatTrek, 5% tails with six degrees of freedom has a t-score of 1.943.

The 90% confidence interval for my reaction time in any given trial is (143.2ms, 243.3ms):

inividual question

>> x + 1.943*s
ans = 0.2433

>> x - 1.943*s
ans = 0.1432

100 125 150 175 200 225 250 275 300
0

0.2

0.4

0.6

0.8

1

1.2

Reaction Time (ms)

90% Confidence Interval

The 90% confidence interval for my average reaction time is (174.3ms, 212.2ms):

population question

>> x + 1.943*s/sqrt(7)
ans = 0.2122

>> x - 1.943*s/sqrt(7)
ans = 0.1743

Generating Frequencies with Timer2

Turn your PIC board into an 8-key piano using Timer 2 interrupts.

A note plays on a speaker as long as a button is held down.

The frequency played depends upon the button:

button RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

note A2 B2 C3 D3 E3 F3 G3 A3

Hz 110 123.47 130.81 146.83 164.81 174.61 196 220

N 45,454.55 40,495.34 38,222.5 34,052.52 30,337.23 28,634.59 25,510.46 22,727.27

A 12 12 12 12 12 12 12 12

B 236.74 210.91 199.08 177.36 158.01 149.14 132.87 118.37

C 16 16 16 16 16 16 16 16

5) Give a flow chart for this program

One flow chart for the main routine

One flow chart for each interrupts

Start

Initialize I/O

Initialize

Interrupts

reset Timer2

INT0

Button?

Toggle RC0

Exit

yes

no

Check Buttons

Update PR2

Display Note

6) Write the corresponding C code

// Global Variables
unsigned long int TIME;

// High-priority service
void interrupt IntServe(void)
{
 if (TMR2IF) {
 RA1 = !RA1;
 if(PORTB) RA2 = !RA2;
 TMR2IF = 0;
 }
 }

// set up Timer2 for A=12, C=4
 T2CON = 0x5F;
 PR2 = 178;
 TMR2ON = 1;
 TMR2IE = 1;
 TMR2IP = 1;
 PEIE = 1;

// turn on all interrupts
GIE = 1;

 while(1) {
 if(RB7) PR2 = 236;
 if(RB6) PR2 = 210;
 if(RB5) PR2 = 198;
 if(RB4) PR2 = 176;
 if(RB3) PR2 = 157;
 if(RB2) PR2 = 148;
 if(RB1) PR2 = 132;
 if(RB0) PR2 = 117;
 LCD_Move(1,0); LCD_Out(PR2, 3, 0);
 }
 }

Memory Summary:
 Program space used 9E4h (2532) of 10000h bytes (3.9%)
 Data space used 35h (53) of F80h bytes (1.3%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

7) Validation: Collect data to verify your code works

Measure the frequency of each note

Verify a note plays when a button is held down

Verify the piano is silent when no buttons are pressed

Button Hz Hz (actual) Error (%)

RB7 110 110 0

RB6 123.47 123.5 0.02

RB5 130.81 131 0.15

RB4 146.83 147.3 0.32

RB3 164.81 165 0.12

RB2 174.61 175 0.22

RB1 196 196 0

RB0 220 221 0.45

8) What happens when you press two buttons at once?

Determine by running your program

RB7 & RB0 = 221Hz

RB6 & RB1 = 196Hz

RB5 & RB2 = 175.0Hz

Explain why this makes sense based upon how you wrote your code.

The way the code is written, the last button checked is the one that wins: it over-writes the previous

value of PR2.

If instead I had used else if statements, the first button checked would have won.

