ECE 376 - Homework #6

A/D Converters, Chi-squared Test - Due Monday, March 3rd

A/D Conversion

1) Write a C program which

- Uses the A/D converter and a thermistor to measure the temperature of something, and
- Displays on the LCD the temperature in degrees C with a resolution of 0.01C.

Give

- Your C code, and
- The compiled size of your code

Thermistor Resistance vs. Temperature relationship:

$$R = 1000 \cdot \exp\left(\frac{3905}{T + 273} - \frac{3905}{298}\right)\Omega$$

Code:

Memory Summary:									
Program space	used	1BB2h	(7090)	of	10000h	bytes	(10.8%)
Data space	used	43h	(67)	of	F80h	bytes	(1.7%)
EEPROM space	used	Oh	(0)	of	400h	bytes	(0.0%)
ID Location space	used	Oh	(0)	of	8h	nibbles	(0.0%)
Configuration bits	used	Oh	(0)	of	7h	words	(0.0%)

Main Loop (main routine)

```
// Initialize the A/D port
  TRISA = 0xFF;
   TRISE = 0 \times 0F;
  ADCON2 = 0 \times 85;
  ADCON1 = 0 \times 07;
  ADCON0 = 0 \times 01;
   while(1) {
      A2D = A2D_Read(1);
      VOLT = 0.488 * A2D;
      OHM = 1000.0 * (A2D / (1023.0 - A2D) );
      CELSIUS = 39300. / (log(A2D / (1023. - A2D)) + 13.1879) - 2730;
      LCD_Move(0,0); LCD_Out(A2D, 5, 0);
      LCD_Move(0,8); LCD_Out(VOLT, 5, 2);
      LCD_Move(1,0); LCD_Out(OHM, 5, 0);
      LCD_Move(1,8); LCD_Out(CELSIUS, 5, 1);
      Wait_ms(100);
      }
   }
```

2) With your temperature sensor, measure the temperature of four different things. Some suggestions are:

- The temperature of cold tap water
- The temperature of hot tap water
- The temperature of a refrigerator
- The temperature of a freezer
- Other
- Office: 20.6C
- Hot Tea: 45.6C
- Cold Water: 11.2C

Top Row: raw A/D reading, Volts Second row: Resistance (Ohms) Temperature (C)

Chi-Squred Test

3) Determine experimentaly using a chi-squared test whether or not the following C code produces a fair 6-sided die:

```
while(1) {
   while(!RB0);
   while(RB0) DIE = (DIE + 1) % 6;
   DIE += 1;
   LCD_Move(1,0); LCD_Out(DIE, 1, 0);
   SCI_Out(DIE, 1, 0);
   SCI_CRLF();
  }
```

Collect data

Frequency of Numbers					
1	2	3	4	5	6
10	10	19	16	24	15

Compute the chi-squared score

Die Roll	р	np	Ν	chi-squared
1	1/6	15.67	10	2.05
2	1/6	15.67	10	2.05
3	1/6	15.67	19	0.71
4	1/6	15.67	16	0.01
5	1/6	15.67	24	4.43
6	1/6	15.67	15	0.03
			Total	9.27

From StatTrek, a chi-squared score of 9.27 with 5 degrees of freedom corresponds to a probability of 0.90123. There is a 90.123% chance this is a loaded die

Enter value for degrees of freedom.Enter a value for one, and only one, of the other textboxes.					
Click Calculate to compute a value for	the remaining textbox.				
Degrees of freedom	5				
Chi-square value (x) 9.27					
Probability: P(X ² ≤9.27) 0.90123					
Probability: P(X ² ≥9.27) 0.09877					
Calculate					

4) Determine experimentaly using a chi-squared test whether or not the following C code produces a fair 6-sided die:

```
while(1) {
   while(!RB0);
   while(RB0) {
      DIE = (DIE + 1) % 13;
      }
   DIE = (DIE % 6) + 1;
   LCD_Move(1,0); LCD_Out(DIE, 1, 0);
   SCI_Out(DIE, 1, 0);
   SCI_CRLF();
   }
}
```

Again, collect data

Frequency of Numbers					
1	2	3	4	5	6
31	21	29	22	31	27

Compute the chi-squared score

Die Roll	р	np	Ν	chi-squared
1	1/6	26.83	31	0.65
2	1/6	26.83	21	1.27
3	1/6	26.83	29	0.18
4	1/6	26.83	22	0.87
5	1/6	26.83	31	0.65
6	1/6	26.83	27	0
			Total	3.61

From StatTrek, a chi-squred score of 3.61 corresponds to a probability of 39%

There is a 39% chance this is a loaded die

- It actually *is* a loaded die (0 comes up 3/13 of the time, other numbers come up 2/13 of the time)
- 161 rolls weren't enough to tell this die is loaded

 Enter value for degrees of freedom. Enter a value for one, and only one, of the other textboxes. Click Calculate to compute a value for the remaining textbox. 				
Degrees of freedom	5			
Chi-square value (x) 3.61				
Probability: P(X ² ≤3.61) 0.39319				
Probability: P(X ² ≥3.61) 0.60681				
Calculate				

Roulette!

Write a C program to play roulette:

- On reset, you start with \$100 in your bank
- To start a game, press buttons RB0..RB7 to bet on the numbers 0..7
- When you release the button, a random number in the range of 0..8 is generated (nine numbers).
 - 0-7 corresponds to the winning number being 0..7
 - If you roll an eight, the winning number is the number you picked minus one (just missed)
- The PIC processor then counts 32 + N times (N = the random number), with 100ms between counts
- As it counts, the LCD display shows the ball position (0..7)
- When done counting, it checks if you won
 - If the number you pressed is equal to the final ball position, you win \$8
 - If different, you lose \$1
- 5) Give a flow chart for this program

6) Write the C code for this program

```
while(1) {
   while (PORTB == 0);
   while(PORTB != 0) {
      if(RB0) Bet = 0;
      if(RB1) Bet = 1;
      if(RB2) Bet = 2;
      if(RB3) Bet = 3;
      if(RB4) Bet = 4;
      if(RB5) Bet = 5;
      if(RB6) Bet = 6;
      if(RB7) Bet = 7;
      N = (N+1)%9;
      }
   if(N < 9) M = 32 - Die + N;
   else M = (32 - Die + Bet - 1);
   LCD_Move(1,0); LCD_Out(Bet, 1, 0);
   for(i=M; i>0; i--) {
     Die = (Die + 1) % 8;
      LCD_Move(1,5); LCD_Out(Die, 1, 0);
     Wait_ms(100);
     }
   if(Die == Bet) Bank += 8;
   else Bank -= 1;
   LCD_Move(1,10); LCD_Out(Bank, 3, 0);
   SCI_Out(Bet, 1, 0);
   SCI_Out(Die, 1, 0);
   SCI_Out(Bank, 3, 0);
   SCI_CRLF();
   }
```

}

7) Collect data to verify your program is working correctly

Try some test code:

Change the condition to if(N > 9)

- Bet on 1, winning number = 0
- Bet on 2, winning number = 1
- Bet on 3, winning number = 2
- etc

Change back to if(N < 9)

- Bet on 1, winning number = 1 (win \$8)
- Bet on 2, winning number = 3 (lose \$1)
- Bet on 3, winning number = 1
- Bet on 4, winning number = 5
- Bet on 5, winning number = 0
- Bet on 6, winning number = 3
- Bet on 7, winning number = 6

Seems to work

- Winning numbers look random
- Win \$8 when correct
- Lose \$1 when incorrect

Roulette Wheel after 46 games (I've lost \$19 so far, but I was that close to winning)

8) Determine using a chi-squared test if this is a fair game (the probability of each number coming up is 1/8, and/or the probability of winning is 1/8

Comment out the Wait_ms(100) code to speed it up

I'm losing overall - looks like a riggend game

Chi-Squared Test: There are several ways to define N bins. Use two bins since there's not a lot of data

- Win (p = 1/8)
- Lose (p = 7/8)

With 3 wins in 46 games, the chi-squared score is 1.5

Bin	р	np	Ν	chi-squared
Win	1/8	5.75	3	1.32
Lose	7/8	40.25	43	0.19
			Total	1.5

From StatTrek, a chi-squared score of 1.5 corresponds to a probability of 0.7788

I'm 77.88% certain this is a rigged game

Enter value for degrees of freedom.					
 Enter a value for one, and only one, of 	the other textboxes.				
 Click Calculate to compute a value for the remaining textbox. 					
Degrees of freedom	1				
Chi-square value (x) 1.5					
Probability: P(X ² ≤1.5) 0.77886					
Probability: P(X ² ≥1.5) 0.22114					
Calculate					