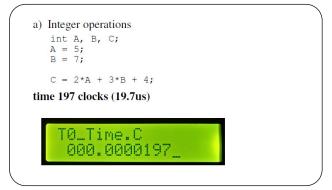
ECE 376 - Homework #1


PIC Background Due Wednesday, January 22nd

Problem	Answer
 How many clocks does it take to do an integer operation in C? Check Homework #9 solutions for Spring 2024 	197 clocks
2) A PIC's output is limited to 25mA. Assuming V2 is 5V, what is the smallest resistance youcan connect to the output? (how small can R3 be?)	200 Ohms
A PIC can measure voltage to 4.88mV. To give an idea of how small thi	is is
3) What is the smallest change in R2 a PIC can measure if $R2 = 2.2k$ Ohms nominally?	8.606 Ohms
• How much does R2 have to change from 2.2k Ohms for V1 to change by 4.88mV?	
4) Assume R2 is a thermistor.	8.0872C
 What temperature is it if R2 = 2.2k Ohms? How much does the temperature have to change for V1 to change by 4.88mV? 	0.079C
A PIC can measure time to 100ns. To give an idea of how small this is.	
5) The fastest X-man is Quicksilver - able to run 175mph. How far can Quicksilver run in 100ns?	7.823um
 6) Assume for the 555 timer R1 = 2.2k, R2 = 2.2k, C = 0.22uF What frequency does the 555 timer output on pin #3? 	993.59Hz
7) What is the smallest change in frequency a PIC can detect?	0.0987Hz
• i.e. how much does the frequency have to change for the period to change by 100ns?	
8) With this circuit, you can build an Ohm-meter (replace R2 with the resistance to be measured.) Assume $R2 = 2.2k$ Ohms (nominally). How much does R2 have to change for the period to change by 100ns?	0.32788 Ohms
• i.e. What is the resolution of this circuit when used as an Ohm-meter?	
 9) Replace R2 with a thermistor at a temperature where R2 is 2.2k Ohms nominally. How much does the temperature have to change for the period to increase by 100ns? i.e. what is the resolution in degrees C? 	0.00292C

- 1) How many clocks does it take to do an integer operation in C?
 - Check Homework #9 solutions for Spring 2024

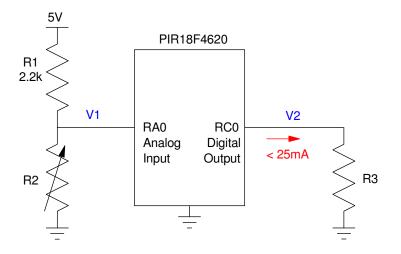
ans: 197 clocks

Note: If you need help doing a homework assignment, a good place to go is Bison Academy. Homework problems are changed every semester. However, previous homework solutions can give you a good idea on where to start.

from homework #9, Spring 2024

2) A PIC's output is limited to 25mA. Assuming V2 is 5V, what is the smallest resistance you can connect to the output? (how small can R3 be?)

$$V = IR$$
$$R > \left(\frac{5V}{25mA}\right) = 200\Omega$$


Note: This means

- A PIC can drive a 200+ Ohm load
- A PIC cannot drive an 8-Ohm speaker directly.

If you want to drive a speaker, you need to add a resistor to limit the current or some electronics as a buffer. (more on this later)

A PIC can measure voltage to 4.88mV. To give an idea of how small this is....

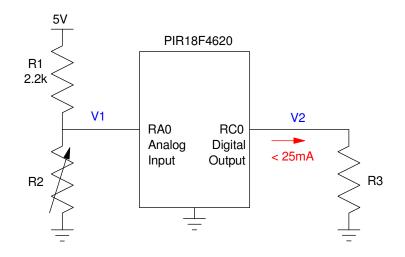
3) What is the smallest change in R2 a PIC can measure if R2 = 2.2k Ohms nominally? How much does R2 have to change from 2.2k Ohms for V1 to change by 4.88mV?

At nominal resistance (R2 = 2.2k)

$$V_1 = \left(\frac{R_2}{R_2 + R_1}\right) 5V = 2.5000V$$

Adding 4..88mV (the smallest change in voltage a PIC's A/D can detect)

$$V_1 = 2.50488V$$


Recalculating R2

$$2.50488V = \left(\frac{R_2}{R_2 + 2.2k}\right)5V$$
$$R_2 = \left(\frac{2.50488V}{5 - 2.50488V}\right)2.2k$$
$$R_2 = 2208.606\Omega$$

for a change of 8.606 Ohms

With this circuit, the smallest change in resistance a PIC can detect is 8.606 Ohms

4) Assume R2 is a thermistor.

What temperature is it if R2 = 2.2k Ohms?

$$R_2 = 2.2k\Omega = 1000 \cdot \exp\left(\frac{3905}{T + 273} - \frac{3905}{298}\right)\Omega$$

Solving for T

$$T = 8.0872C$$

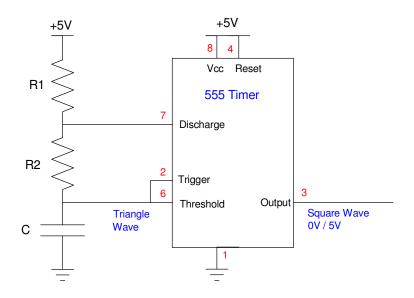
How much does the temperature have to change for V1 to change by 4.88mV? Recalculate when R2 = 2208.606 Ohms

$$R_2 = 2208.606\Omega = 1000 \cdot \exp\left(\frac{3905}{T+273} - \frac{3905}{298}\right)\Omega$$
$$T = 8.0083C$$

The change in temperature is the smallest change in T you can detect

$$\delta T = 0.0790C$$

With this circuit, the smallest change in tempeature you can detect is 0.079C


A PIC can measure time to 100ns. To give an idea of how small this is....

5) The fastest X-man is Quicksilver - able to run 175mph. How far can Quicksilver run in 100ns? Convert to metric

$$\left(175\frac{miles}{hour}\right)\left(\frac{1609.3m}{mile}\right)\left(\frac{1hr}{3600s}\right) = 78.2299\frac{m}{s}$$
$$d = (78.2299\frac{m}{s})(100ns) = 7.823\mu m$$

Quicksilver moves 7.823 microns in one clock (less than the thickness of a human hair)

6) Assume for the 555 timer

R1 = 2.2k, R2 = 2.2k, C = 0.22uF

What frequency does the 555 timer output on pin #3?

$$T = (R_1 + 2R_2) \cdot C \cdot \ln(2)$$

$$T = 1.0064ms$$

$$f = \frac{1}{T} = 993.5916Hz$$

7) What is the smallest change in frequency a PIC can detect?Increase T by 100ns

$$T_7 = 1.0065ms$$

 $f_7 = \frac{1}{T_7} = 993.4929Hz$
 $\delta f = 0.0987Hz$

The smallest change in frequency a PIC can detect is 0.0987Hz

8) With this circuit, you can build an Ohm-meter (replace R2 with the resistance to be measured.) Assume R2 = 2.2k Ohms (nominally). How much does R2 have to change for the period to change by 100ns?

The nominal period when R2 = 2200 Ohms is

 $T = (R_1 + 2R_2) \cdot C \cdot \ln(2)$ T = 1.00645 ms

Increase the period by 100ns

$$T = 1.00655 ms$$

Recalculate R2

$$T = (R_1 + 2R_2) \cdot C \cdot \ln(2)$$

$$T = 1.00655ms = (2200\Omega + 2R_2) \cdot 0.22\mu F \cdot \ln(2)$$

$$R_2 = 2200.32788\Omega$$

With this circuit, you can measure resistance to 0.32788 Ohms

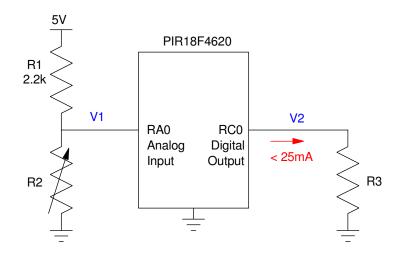
9) Replace R2 with a thermistor at a temperature where R2 is 2.2k Ohms nominally. How much does the temperature have to change for the period to increase by 100ns?

When R2 = 2200 Ohms

$$R_2 = 2200.00\Omega = 1000 \cdot \exp\left(\frac{3905}{T + 273} - \frac{3905}{298}\right)\Omega$$

$$T = 8.0872C$$

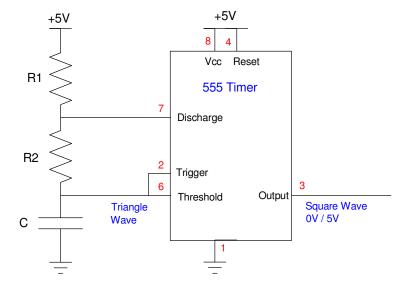
When R2 = 2200.32788 Ohms


$$R_2 = 2200.32788\Omega = 1000 \cdot \exp\left(\frac{3905}{T+273} - \frac{3905}{298}\right)\Omega$$

T = 8.08422C

for a difference of

$$\delta T = 0.0029C$$


With this circuit, you can measure temperature to 0.0029C

Problem #1 to #3

If R2 is a thermistor, assume

$$R_2 = 1000 \cdot \exp\left(\frac{3905}{T + 273} - \frac{3905}{298}\right)\Omega$$

Astable 555 Timer: Problems 5-8 The square wave at the Output has a period of $T=(R_1+2R_2)\cdot C\cdot \ln(2)$ seconds