
ECE 376 - Test #3: Name __________________
Fall 2024. Open-Book, Open Note

1) Interrupts: Write a C program which uses an interrupt to output a square wave whose frequency is 1/3

the input frequency (period is 3x the period of the input)

Input: 1kHz to 2kHz square wave

Output: Square wave whose period is 3x the period of the input

Your pick on which interrupts to use

note: the edges do not need to be synchronized - only the frequency (or period) matters

Input

1-2kHz

Output

3x period

Interrupt Used Interrupt Set Up (rising / falling edge, # clocks, etc)

INT0

INT1

Rising

Falling

Main Routine Interrupt Service Routine

// Global variabls
unsigned char N;

while(1) { // main loop
 }

if(INT0IF) {
 N = (N + 1) % 3;
 if(N == 0) RC0 = !RC0;
 INT0IF = 0;
 }

if(INT1IF) {
 N = (N + 1) % 3;
 if(N == 0) RC0 = !RC0;
 INT1IF = 0;
 }

2) Multiple Interrupts: Write a C program which uses interrupts to output a square wave whose

frequency is 32.2% the input frequency (period is 3.1x the period of the input)

Input: 1kHz to 2kHz square wave

Output: Square wave whose period is 3.1x the period of the input

Your pick on which interrupts to use

note: the edges do not need to be synchronized - only the frequency (or period) matters

Input

1-2kHz

Output

3.1x period

Option #1: Interrupt Set-Up:

Input (measure the period) Output (output a square wave)

Interrupt Used Interrupt Set-Up Interrupt Used Interrupt Set-Up

Timer1

INT0

PS = 1

Rising Edge

Timer0 no change

Interrupt Service Routines

Input (measure the period) Output (output a square wave)

// N is a global unsigned int

if(TMR1IF) {
 TMR1IF = 0;
 }

if(INT0IF) {
 T0 = T1;
 T1 = TMR1;
 dT = T1 - T0;
 N = 3.1*dT / 2;
 INT0IF = 0;
 }

if(TMR0IF) {
 TMR0 = - N;
 RC1 = !RC1;
 TMR0IF = 0;
 }

Option #2 (better)

Input (measure the period) Output (output a square wave)

Interrupt Used Interrupt Set-Up Interrupt Used Interrupt Set-Up

Timer1

CCPR1

PS = 1

Rising Edge

CCPR2 no change

Interrupt Service Routines

Input (measure the period) Output (output a square wave)

// N is a global unsigned int

if(TMR1IF) {
 TMR1IF = 0;
 }

if(CCP1IF) {
 T0 = T1;
 T1 = CCPR1;
 dT = T1 - T0;
 N = 3.1*dT / 2;
 CCPR1IF = 0;
 }

if(CCP2IF) {
 CCPR2 += N;
 RC1 = !RC1;
 TMR0IF = 0;
 }

3) Compare Interrupts: Write a subroutine which outputs a square wave which

Is the same frequency as the input waveform (1-2kHz square wave), but

Is delayed by 547 clocks (54.7us for a precise phase shift)

Using Timer1 Capture / Compare interrupts

Assume Timer1 is set up with PS=1

Input: RC2

1-2kHz

Output: RC1

547 clock delay

Capture 1 Interrupt
Record the time of the edges on pin RC2

(input)

Compare 2 Interrupt
Set / Clear RC1 547 clocks after RC2

if(TMR1IF) {
 TMR1IF = 0;
 }

if(CCP1IF) {
 CCPR2 = CCPR1 + 547;
 if(CCP1CON = 0x04) { // rising edge
 CCP1CON = 0x05;
 CCP2CON = 0x08;
 }
 else {
 CCP1CON = 0x04; // falling edge
 CCP2CON = 0x09;
 }
 CCP1IF = 0;
 }

if(CCP2IF) {
 CCP2IF = 0;
 }

4) Digital Filter Design: Assume X and Y are related by the following transfer function:

Y =

3s

(s+2)(s+6)

X

Give the transfer function for a digital filter, G(z), with approximately the same gain vs. frequency when

the sampling rate is 50ms (T = 0.05)

Convert from the s-plane to the z-plane as z = exp(sT)

s = 0 z = esT = 1

s = −2 z = esT = 0.9048

s = −6 z = esT = 0.7408

so G(z) is of the form

Y =

k(z−1)

(z−0.9048)(z−0.7408)

X

Pick 'k' to match the gain at some frequency. Since the DC gain is zero, pick some other frequency (like s

= j)

s = j

3s

(s+2)(s+6)

s=j

= 0.2206∠53.970

z = esT = e j0.05

k(z−1)

(z−0.9048)(z−0.7408)

z=ej0.05
= 1.7880k∠52.450

Pick 'k' so that the gains match

0.2206 = 1.7880k

k = 0.1234

giving

Y =

0.1234(z−1)

(z−0.9048)(z−0.7406)

X

