ECE 376 - Test #3: Name _____

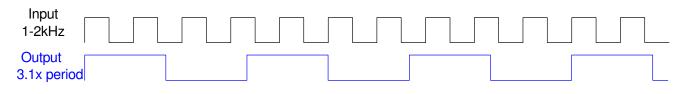
Fall 2024. Open-Book, Open Note

1) Interrupts: Write a C program which uses an interrupt to output a square wave whose frequency is 1/3 the input frequency (period is 3x the period of the input)

- Input: 1kHz to 2kHz square wave
- Output: Square wave whose period is 3x the period of the input

Your pick on which interrupts to use

• note: the edges do not need to be synchronized - only the frequency (or period) matters


Input 1-2kHz Output 3x period	
Interrupt Used	Interrupt Set Up (rising / falling edge, # clocks, etc)
INTO INT1	Rising Falling
Main Routine	Interrupt Service Routine
<pre>// Global variabls unsigned char N; while(1) { // main loop }</pre>	<pre>if(INT0IF) { N = (N + 1) % 3; if(N == 0) RC0 = !RC0; INT0IF = 0; } if(INT1IF) { N = (N + 1) % 3; if(N == 0) RC0 = !RC0; INT1IF = 0; } </pre>

2) Multiple Interrupts: Write a C program which uses interrupts to output a square wave whose frequency is 32.2% the input frequency (period is 3.1x the period of the input)

- Input: 1kHz to 2kHz square wave
- Output: Square wave whose period is 3.1x the period of the input

Your pick on which interrupts to use

• note: the edges do not need to be synchronized - only the frequency (or period) matters

Option #1: Interrupt Set-Up:

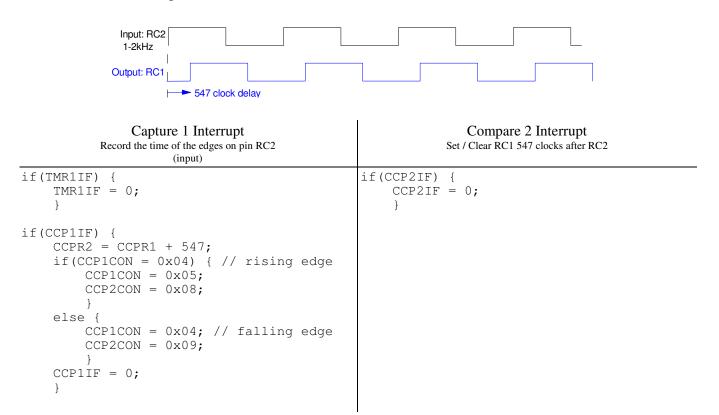
Input (measure the period)		Output (output a square wave)	
Interrupt Used	Interrupt Set-Up	Interrupt Used	Interrupt Set-Up
Timer1 INT0	PS = 1 Rising Edge	Timer0	no change

Interrupt Service Routines

Input (measure the period)	Output (output a square wave)
// N is a global unsigned int	if(TMROIF) {
if(TMR1IF) {	TMR0 = - N; RC1 = !RC1;
TMR1IF = 0;	TMROIF = 0;
}	}
if(INTOIF) {	
T0 = T1;	
T1 = TMR1;	
N = 0; INTOIF = 0;	
}	
<pre>dT = T1 - T0; N = 3.1*dT / 2; INT0IF = 0; }</pre>	

Option #2 (better)

Input (measure the period)		Output (output a square wave)		
Interrupt	Used	Interrupt Set-Up	Interrupt Used	Interrupt Set-Up
Time CCPF		PS = 1 Rising Edge	CCPR2	no change


Interrupt Service Routines

Input (measure the period)	Output (output a square wave)
// N is a global unsigned int	if(CCP2IF) {
if(TMR1IF) {	CCPR2 += N; RC1 = !RC1;
<pre>TMR1IF = 0; }</pre>	<pre>TMROIF = 0; }</pre>
<pre>if(CCP1IF) { T0 = T1; T1 = CCPR1; dT = T1 - T0; N = 3.1*dT / 2; CCPR1IF = 0; } </pre>	

3) Compare Interrupts: Write a subroutine which outputs a square wave which

- Is the same frequency as the input waveform (1-2kHz square wave), but
- Is delayed by 547 clocks (54.7us for a precise phase shift)
- Using Timer1 Capture / Compare interrupts

Assume Timer1 is set up with PS=1

4) Digital Filter Design: Assume X and Y are related by the following transfer function:

$$Y = \left(\frac{3s}{(s+2)(s+6)}\right)X$$

Give the transfer function for a digital filter, G(z), with approximately the same gain vs. frequency when the sampling rate is 50ms (T = 0.05)

Convert from the s-plane to the z-plane as z = exp(sT)

$$s = 0$$
 $z = e^{sT} = 1$
 $s = -2$ $z = e^{sT} = 0.9048$
 $s = -6$ $z = e^{sT} = 0.7408$

so G(z) is of the form

$$Y = \left(\frac{k(z-1)}{(z-0.9048)(z-0.7408)}\right)X$$

Pick 'k' to match the gain at some frequency. Since the DC gain is zero, pick some other frequency (like s = j)

$$s = j$$

$$\left(\frac{3s}{(s+2)(s+6)}\right)_{s=j} = 0.2206 \angle 53.97^{0}$$

$$z = e^{sT} = e^{j0.05}$$

$$\left(\frac{k(z-1)}{(z-0.9048)(z-0.7408)}\right)_{z=e^{j0.05}} = 1.7880k \angle 52.45^{0}$$

Pick 'k' so that the gains match

$$0.2206 = 1.7880k$$

 $k = 0.1234$

giving

$$Y = \left(\frac{0.1234(z-1)}{(z-0.9048)(z-0.7406)}\right)X$$