
ECE 376 - Homework #11

z-Transforms and Difital Filters -  Due Monday, December 2nd

LaPlace-Transforms

1) Assume X and Y are related by the following transfer function

Y = 


6s+3

s2+7s+18


X

a)  What is the differential equation relating X and Y?

Cross multiply

(s2 + 7s + 18)Y = (6s + 3)X

'sY' means the derivative of y

y + 7y + 18y = 6x + 3x

b)  Find y(t) assuming

x(t) = 2 + 3 sin(4t)

This is a phasor problem along with superposition.  Treat this as two separate problems

DC:  x(2) = 2

s = 0

X = 2

Y = 


6s+3

s2+7s+18




s=0

⋅ (2) = 0.3333

meaning

y(t) = 0.3333



AC: x(t) = 3 sin(4t)

s = j4

real = cosine,   -imag = sineX = 0 − j3

Y = 


6s+3

s2+7s+18




s=j4

⋅ (0 − j3)

Y = −0.1371 − j2.5812

meaning

y(t) = −0.1371 cos(4t) + 2.5812 sin(4t)

The total answer is the DC term plus the AC term (superposition)

y(t) = 0.3333 − 0.1371 cos(4t) + 2.5812 sin(4t)

Comment:  A common mistake students make is they take the two terms:

DC: Y = 0.3333

AC: Y = −0.1371 − j2.5812

and add them together

DC + AC: Y = 0.1963 − j2.5812

You can't do that.  

The DC term represents y(t) at 0 rad/sec.  

The AC term represents y(t) as 4 rad/sec.  

In the total answer (above in the box), the AC and DC terms don't combine: you can't simplify this

answer.



z-Transforms

2)  Assume X and Y are related by the following transfer function

Y = 


0.25(z+1)

(z−0.9)(z−0.4)


X

a)  What is the difference equation relating X and Y?

Multiply out and cross multiply

(z2 − 1.3x + 0.36)Y = 0.25(z + 1)X

Note that 'zY' means 'the next value of y(k)' or 'y(k+1')

y(k + 2) − 1.3y(k + 1) + 0.36y(k) = 0.25(x(k + 1) + x(k))

b)  Find y(t) assuming a sampling rate of T = 0.01 second

x(t) = 2 + 3 sin(4t)

Again, use superposoition

DC: x(t) = 2

X = 2

s = 0

z = esT = 1

Y = 


0.25(z+1)

(z−0.9)(z−0.4)




z=1

⋅ (2)

Y = 16.6667

meaning

y(t) = 16.6667



AC: x(t) = 3 sin(4t)

X = 0 − j3

s = j4

z = esT = e j0.04

Y = 


0.25(z+1)

(z−0.9)(z−0.4)




z=ej0.04
⋅ (0 − j3)

Y = −9.7297 − j21.2246

meaning

y(t) = −9.2797 cos(4t) + 21.2246 sin(4t)

The total answer is DC + AC

y(t) = 16.6667 − 9.2797 cos(4t) + 21.2246 sin(4t)

c)  Find y(t) assuming

x(t) = 2u(t)

This is a z-transform problem.  Replace x(t) with the transform for X(z)

Y = 


0.25(z+1)

(z−0.9)(z−0.4)






z

z−1



Pull out a z

Y = 


0.25(z+1)

(z−1)(z−0.9)(z−0.4)


 z

Do a patrial fraction expansion

Y = 




8.3333

z−1

 + 

−9.50

z−0.9

 + 

1.1667

z−0.4



 z

Multiply through by z

Y = 


8.3333z

z−1

 + 

−9.50z

z−0.9

 + 

1.1667z

z−0.4



Take the inverse z-transform

y(k) = 
8.3333 − 9.50(0.9)

k
+ 1.1667(0.4)

k
 u(k)



Filters in the z-Plane

3)  Assume G(s) is a low-pass filter with real poles:

G(s) = 


500

(s+4)(s+7)(s+10)




Design a digital filter, G(z), which has approximately the same gain vs. frequency as G(s).  Assume a

sampling rate of T = 0.01 second.

Plot the gain vs. frequency for both filters from 0 to 50 rad/sec.

Convert from the s-plane to the z-plane as z = exp(sT)

s = −4 z = esT = 0.9608

s = −7 z = esT = 0.9324

s = −10 z = esT = 0.9048

meaning G(z) is of the form:

G(z) = 


k

(z−0.9608)(z−0.9324)(z−0.9048)




Pick 'k' to match the DC gain  

Gs = 


500

(s+4)(s+7)(s+10)




s=0

= 1.7857

Gz = 


k

(z−0.9608)(z−0.9324)(z−0.9048)




z=1

= 1.7857

k = 0.00045049

so

G(z) = 


0.00045049

(z−0.9608)(z−0.9324)(z−0.9048)




sidelight:  The gain of G(z) should match G(s).  The phase shift will be a little off, however, due to G(z)

having too much delay.  If the delay is important to you (such as in ECE 461 Controls). add zeros at z=0

until the phase (delay) matches as close as possible.  



Check:  Plot the gain vs. frequency for G(s) and G(z).  In Matlab:

>> w = [0:0.01:30]';
>> s = j*w;
>> T = 0.01;
>> z = exp(s*T);
>> Gs = 500 ./ ( (s+4).*(s+7).*(s+10) );
>> Gz = 0.00045049 ./ ( (z-0.9608).*(z-0.9324).*(z-0.9048) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r')
>> xlabel('rad/sec')
>> ylabel('gain')

The gain vs. frequency of the two filters are almost identical.

From a user standpoint, I don't really care how you implement this filter: G(s) or G(z)

The gain vs. the frequency is the same either way



4)  Assume G(s) is the following band-pass filter:

G(s) = 


500

(s+4)(s2+4s+100)




Design a digital filter, G(z), which has approximately the same gain vs. frequency as G(s).  Assume a

sampling rate of T = 0.01 second.

Plot the gain vs. frequency for both filters from 0 to 50 rad/sec.

Same procedure as before:

s = −4 z = esT = 0.9608

s = −2 + j9.7980 z = esT = 0.9755 + j0.0959

s = −2 − j9.7980 z = esT = 0.9755 − j0.0959

meaning

G(z) = 


k

(z−0.9608)(z−0.9755+j0.0959)(z−0.0755−j0.0959)




For conveniance, multiply together the complex terms

G(z) =





k

(z−0.9608)z
2−1.951z+0.9608






Pick 'k' to match the DC gain

DC = 


500

(s+4)(s2+4s+100)


 = 1.25

DC =





k

(z−0.9608)z
2−1.951z+0.9608






z=1

= 1.25

k = 0.00048006

so

G(z) =





0.00048006

(z−0.9608)z
2−1.951z+0.9608






Check:  Plot the gain vs. frequency for G(s) and G(z)



>> w = [0:0.01:30]';
>> s = j*w;
>> T = 0.01;
>> z = exp(s*T);
>> Gs = 500 ./ ( (s+4).*(s.^2 + 4*s + 100) );
>> Gz = 0.00048006 ./ ( (z-0.9608).*(z.^2 - 1.951*z + 0.9608) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r')
>> xlabel('rad/sec')
>> ylabel('gain')

G(s) and G(z) have the same gain vs. frequency.  Essentially, they're the same filter.



5)  Write a C program to implement the digital filter, G(z)

 Y =





0.00048006

(z−0.9608)z
2−1.951z+0.9608




X

There are several ways of doing this.  The most straight-forward way (not the best option) is to multuply

out the polynomials

Y = 


0.00048006

z3−2.9118z2+2.8353z−0.9231


X

Cross multiply

(z3 − 2.9118z2 + 2.8353z − 0.9231)Y = (0.00048006)X

Write as a difference equations

y(k + 3) − 2.9118y(k + 2) + 2.8353y(k + 1) − 0.9231y(k) = 0.00048006x(k)

shift by three (change of variable)

y(k) − 2.9118y(k − 1) + 2.8353y(k − 2) − 0.9231y(k − 3) = 0.00048006x(k − 3)

solve for y(k)

y(k) = 2.9118y(k − 1) − 2.8353y(k − 2) + 0.9231y(k − 3) + 0.00048006x(k − 3)

That's pretty much your program

while(1) {
   x3 = x2;
   x2 = x1;
   x1 = x0;
   x0 = A2D_Read(0);

   y3 = y2;
   y2 = y1;
   y1 = y0;

   y0 = 2.9118*y1 - 2.8353*y2 + 0.9231*y3 + 0.00048006*x3;

   D2A(y0);
   Wait_ms(10);
   }



FIR Filters

6)  Find the impulse response of a filter with the following gain vs. frequency:

hint:  Approximate the waveform by adding up ideal low-pass filters

0 1 2 3 4 5 6 7 8 9 10
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Frequency (rad/sec)

Gain

Add rectangles to get this shape

h(t) = 0.25 ⋅ LPF(7) + 1.25 ⋅ LPF(5) − 0.5 ⋅ LPF(3)

h(t) = 0.25
sin(7t)

t

 + 1.25

sin(5t)

t

 − 0.5

sin(3t)

t



times a fudge factor to make the DC gain equal to 1.0000 (the total area is 1.000)

>> dt = 0.001;
>> t = [-30:dt:30]' + 1e-9;
>> h1 = sin(7*t)./t;
>> sum(h1) * dt

ans =    3.1500

Apparently, the fudge factor is   (not too surprised)
1
π

h(t) =
0.25

π



sin(7t)

t

 +

1.25
π



sin(5t)

t

 −

0.5
π



sin(3t)

t





7)  Design a FIR filter to approximate this impulse response.  Include in your design

The sampling rate

The length of the window (10 seconds?)

The impulse response of your FIR fitler.

Start with looking at the impulse response for h(t). In Matlab:

>> dt = 0.001;
>> t = [-30:0.001:30]' + 1e-9;
>> h1 = 0.25/pi * sin(7*t) ./ t;
>> h2 = 1.25/pi * sin(5*t) ./ t;
>> h3 = -0.5/pi * sin(3*t) ./ t;
>> h = h1 + h2 + h3;
>> plot(t,h)
>> xlim([-30,30])
>> DC = sum(h) * dt

DC =  0.9954

Almost 1.000 - so it looks right.

The impulse reasponse goes from -infinity to +infinity - which is hard to implement.  Arbitrarily,

truncate at -5 seconds to + 5 seconds and shift right by 5 to make causal:

This is an analog signal, meaning an infinite number of points in the range of (-5s, +5s).  Infinity is also

a difficult number to program, so approximat this with 100 points:

>> dt = 0.1;
>> t = [-5:dt:5]' + 1e-9;
>> h1 = 0.25/pi * sin(7*t) ./ t;
>> h2 = 1.25/pi * sin(5*t) ./ t;
>> h3 = -0.5/pi * sin(3*t) ./ t;
>> h = h1 + h2 + h3;
>> plot(t+5, h)
>> xlim([0,10]);
>> xlabel('Time (seconds)')



Impulse response of FIR filter

There are many other ways to approximate h(t).  The acid test is if it works (problem #8)



8)  Plot the gain vs. frequency of your filter

>> w = [0:0.01:10]';
>> s = j*w;
>> T = dt;
>> z = exp(s*T);

>> Gw = 0*w;
>> for i = 1:length(h)
     Gw = Gw + h(i) * z .^ (1-i);
     end
>> plot(w,abs(Gw))
>> hold on
>> plot([0,3],[1,1],'r--')
>> plot([3,5],1.5*[1,1],'r--')
>> plot([5,7],0.25*[1,1],'r--')
>> xlabel('Frequency (rad/sec')
>> ylabel('Gain');
>> 

The approximation isn't great.  It would be closer if

you went further out than 5 seconds, and

you used more than 100 points in the FIR filter



If you go from -20 to +20 seconds, the impulse response contains 800 points:

and the frequency response is closer:


