# ECE 376 - Homework #8

Timer2 Interrupts - Due Monday, November 4th

## **Measuring Time with Timer2**

Write a program to measure your reflex time with a resolution of 0.1ms using Timer2 interrupts.

- Press and release RB0 to start the game
- This geneates a random number from 3.0000 to 7.0000 seconds.
- Start decrementing time down to 0.0000 seconds using Timer2 interrupts
- When you get to 0.0000, turn on the lights on PORTA
- As soon as the lights turn on, press RB0 again

The time delay between when the lights turned on and you pressed RB0 is your reflex time.

1) Give a flow chart for this program



### 2) Write the corresponding C code

```
Interrupt Service Routine:
    // Global Variables
    unsigned long int TIME;
```

```
// High-priority service
void interrupt IntServe(void)
{
    if (TMR2IF) {
        RC0 = !RC0;
        TIME = TIME + 1;
        TMR2IF = 0;
        }
}
```

## Initialization

```
// set up Timer2 for 0.11ms
T2CON = 0x4D;
PR2 = 24;
TMR2ON = 1;
TMR2IE = 1;
TMR2IP = 1;
PEIE = 1;
// turn on all interrupts
```

```
Main Loop
```

GIE = 1;

```
while(1) {
   PORTA = 0;
   PORTE = 0;
   while(!RB0);
   RE0 = 1;
   while (RB0) DELAY = (DELAY + 1)\$4000;
   Wait_ms(DELAY + 3000);
   PORTA = 0xFF;
   TIME = 0;
   while(!RB0);
   dT = TIME;
   LCD_Move(1,8);
                   LCD_Out(dT, 7, 4);
   Wait_ms(1000);
   }
}
```

Memory Summary:

| Program space      | used | B02h | ( | 2818) | of | 10000h | bytes   | ( | 4.3%) |
|--------------------|------|------|---|-------|----|--------|---------|---|-------|
| Data space         | used | 37h  | ( | 55)   | of | F80h   | bytes   | ( | 1.4%) |
| EEPROM space       | used | 0h   | ( | 0)    | of | 400h   | bytes   | ( | 0.0%) |
| ID Location space  | used | 0h   | ( | 0)    | of | 8h     | nibbles | ( | 0.0%) |
| Configuration bits | used | 0h   | ( | 0)    | of | 7h     | words   | ( | 0.0%) |
|                    |      |      |   |       |    |        |         |   |       |

## 3) Validation: Collect data to verify your code works

Timer2 is interrupting every 0.1ms

- RC0 measures at 5007Hz
- Timer2 is running at 99.86us (0.14% error)

The delay is random from 3 to 7 seconds

- Time delay for five runs were:
- {3.234s, 4.022s, 5.103s, 6.705s, 3.241s, 6.864s}
- All times were in the range of (3.000, 7.000) seconds

The time from when the lights turn on and you press RB0 is recorded correctly

Wait five seconds

• time displayed was 4.6546 seconds

Wait nine seconds

• time displayed was 8.4687 seconds

Timer appears to be correct



- 4) Student-t Test: Once your program works, collect 2+ measurements of your reflex time.
  - From your data, compute the 90% confidence interval for your reflex time.

Measure my reflex times:

 $\{0.1749, 0.1688, 0.2415, 0.2143, 0.1793, 0.1858, 0.1880\}$ 

From Matlab, the mean and standard deviation are:

```
>> Data = [0.1749, 0.1688, 0.2415, 0.2143, 0.1793, 0.1858, 0.1880];
>> x = mean(Data)
x = 0.1932
>> s = std(Data)
s = 0.0258
```

From StatTrek, 5% tails with six degrees of freedom has a t-score of 1.943.

The 90% confidence interval for my reaction time in any given trial is (143.2ms, 243.3ms):

• inividual question

```
>> x + 1.943*s
ans = 0.2433
>> x - 1.943*s
ans = 0.1432
```



The 90% confidence interval for my average reaction time is (174.3ms, 212.2ms):

• population question

```
>> x + 1.943*s/sqrt(7)
ans = 0.2122
>> x - 1.943*s/sqrt(7)
ans = 0.1743
```

# **Generating Frequencies with Timer2**

Turn your PIC board into an 8-key piano using Timer 2 interrupts.

- A note plays on a speaker as long as a button is held down.
- The frequency played depends upon the button:

| button | RB7       | RB6       | RB5      | RB4       | RB3       | RB2       | RB1       | RB0       |
|--------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|
| note   | A2        | B2        | C3       | D3        | E3        | F3        | G3        | A3        |
| Hz     | 110       | 123.47    | 130.81   | 146.83    | 164.81    | 174.61    | 196       | 220       |
| Ν      | 45,454.55 | 40,495.34 | 38,222.5 | 34,052.52 | 30,337.23 | 28,634.59 | 25,510.46 | 22,727.27 |
| А      | 12        | 12        | 12       | 12        | 12        | 12        | 12        | 12        |
| В      | 236.74    | 210.91    | 199.08   | 177.36    | 158.01    | 149.14    | 132.87    | 118.37    |
| С      | 16        | 16        | 16       | 16        | 16        | 16        | 16        | 16        |

5) Give a flow chart for this program

- One flow chart for the main routine
- One flow chart for each interrupts



### 6) Write the corresponding C code

```
// Global Variables
unsigned long int TIME;
// High-priority service
void interrupt IntServe(void)
{
   if (TMR2IF) {
      RA1 = !RA1;
      if(PORTB) RA2 = !RA2;
      TMR2IF = 0;
      }
   }
// set up Timer2 for A=12, C=4
   T2CON = 0x5F;
   PR2 = 178;
   TMR2ON = 1;
   TMR2IE = 1;
   TMR2IP = 1;
   PEIE = 1;
// turn on all interrupts
GIE = 1;
   while(1) {
      if(RB7) PR2 = 236;
      if(RB6) PR2 = 210;
      if(RB5) PR2 = 198;
      if(RB4) PR2 = 176;
      if(RB3) PR2 = 157;
      if(RB2) PR2 = 148;
      if(RB1) PR2 = 132;
      if(RB0) PR2 = 117;
      LCD_Move(1,0); LCD_Out(PR2, 3, 0);
      }
   }
Memory Summary:
                       used 9E4h ( 2532) of 10000h bytes
   Program space
                                                                ( 3.9%)
   Data space
                        used
                               35h (
                                          53) of F80h bytes
                                                                (
                                                                   1.3%)
    LEFROM space used
ID Location space used
                                 0h (
                                          0) of
                                                   400h bytes
                                                                ( 0.0응)
                                  0h (
                                           0) of
                                                     8h nibbles ( 0.0%)
    Configuration bits used
                                  0h (
                                           0) of
                                                     7h words
                                                               ( 0.0%)
```

7) Validation: Collect data to verify your code works

- Measure the frequency of each note
- Verify a note plays when a button is held down
- Verify the piano is silent when no buttons are pressed

| Button | Hz     | Hz (actual) | Error (%) |  |
|--------|--------|-------------|-----------|--|
| RB7    | 110    | 110         | 0         |  |
| RB6    | 123.47 | 123.5       | 0.02      |  |
| RB5    | 130.81 | 131         | 0.15      |  |
| RB4    | 146.83 | 147.3       | 0.32      |  |
| RB3    | 164.81 | 165         | 0.12      |  |
| RB2    | 174.61 | 175         | 0.22      |  |
| RB1    | 196    | 196         | 0         |  |
| RB0    | 220    | 221         | 0.45      |  |

## 8) What happens when you press two buttons at once?

Determine by running your program

- RB7 & RB0 = 221Hz
- RB6 & RB1 = 196Hz
- RB5 & RB2 = 175.0Hz

Explain why this makes sense based upon how you wrote your code.

The way the code is written, the last button checked is the one that wins: it over-writes the previous value of PR2.

If instead I had used else if statements, the first button checked would have won.