
ECE 376 - Homework #3
Binary Inputs, Binary Outputs, & LEDs - Due Monday, September 16th

Binary Inputs

Assume a thermistor has a resistance-temperature relationship of

R = 1000 ⋅ exp 
3905

T+273
− 3905

298

Ω

1) Design a circuit which outputs

0V when T < 40C

5V when T > 40C

Step 1: Find the resistance at 40C

R = 533.6642 Ohms

Step 2: Convert to voltage. Assuming a 1k resistor and a voltage divider

V = 


R

R+1k


 5V = 1.7398V

Step 3: Use a comparitor to convert to 0V / 5V binary

When T = 1000C (ish), R = 0 (ish), Vin = 0V (ish), Vout = 5V

Connect to the minus input to get Vout = (T > 40C)

Vp

Vm

Vout

+5V

0V

MCP602

5V

1k

R

Vin

5V

0V

40C

1.7398V

1.7398V

5V

coldhot

0V

2) Design a circuit which outputs

0V when T < 40C

5V when T > 45C

Step 1: Find the resistance at temperature

T = 40C R = 533.6642 Ohms

T = 45C R = 438.6065 Ohms

Step 2: Convert to voltage. Assume a voltage divider with a 1k resistor

T = 40C Vx = 1.7398V

T = 45C Vx = 1.5244V

Step 3: Set up the Schmitt trigger

The on voltage (45C) is less than the off voltage (40C). Connect to the minus input

The on voltge is 1.5244V. Make the offset 1.5244V

The gain needed is

gain = 


change in output

change in input

 = 


5V−0V

1.8398V−1.5244V


 = 23.21

Make the resistor ratio 23.21 : 1

+

-

Vp

Vm

Y

+5V

0V

MCP602

5V

1k

R

Vin

5V

0V

1.5244V

10k 232.1k

10k 232.1k

40C

1.7398V
45C
1.5244V

3) Design a circuit which outputs

0V when 40C < T < 45C

5V otherwise

A little trickier. Option #1: Design two comparitors and compute the intersection in software

V1: V > 40C

V2: V > 45C

Vp

Vm

+5V

0V

MCP602

5V

1k

R

Vin

Vp

Vm

+5V

0V

MCP602 RB0

RB1

RC0

T>45C

T>40C

40C<T<45C

PIC

1.7398V

1.5244V

Option #2: Use a min-circuit from Electronics

+

-

Vp

Vm

+5V

0V

MCP602

5V

1k

R

Vin

+

-

Vp

Vm

+5V

0V

MCP602

+5V

1k

1.7398V

1.5244V

T > 40C

T < 45C

Y

10C < T < 15C

A

B

min(A, B)

Binary Outputs

4) Design a circuit which allows your PIC board to turn on and off an RGB Piranah LED at 0mA (off)

and 15mA (on). Assume the specifications for the LEDs are:

Color Vf @ 20mA mcd @ 20mA

red 2.0V 10,000

green 3.2V 10,000

blue 3.2V 10,000

Since the voltage is less than 5V and the current is less than 25mA, the PIC can drive the LEDs directly.

Just add a resistor to set the current.

Calculating the resistors:

Rr = 


5V−2.0V

15mA


 = 200Ω

Rg = 


5V−3.2V

15mA


 = 120Ω

Rb = 


5V−3.2V

15mA


 = 120Ω

RC2 RC1 RC0

Rr

200

Rg

120
Rb

120

2.0V 3.2V 3.2V

15mA 15mA 15mA

5) Design a circuit which allows your PIC board to turn on and off a 5W LED at 500mA. The specs for

the LED are:

Vf = 6.0-7.0V (assume 6.5V)

Current = 700mA

500-600 Lumens (equivalent to a 60W light bulb).
https://www.ebay.com/itm/1W-3W-5W-10W-50W-100W-High-power-SMD-Chip-LED-COB-White-Blue-Red-Light-Beads/124011607823

Assume you have a 6144 NPN transistor:

max continuous current = 3A

current gain = 300

Vbe = 0.7V, Vce(sat) = 0.2V

Since this needs more than 5V and more than 25mA, a PIC can't drive the LED directly. Add an NPN

transistor as a switch. Assuming a 6144 NPN transistor and a 12V power supply:

Rc = 


12V−6.5V−0.2V

500mA

 = 10.6Ω

In order to saturate the transistor, you need

βIb > Ic

Ib > 


500mA

300

 = 1.67mA

Pick a number larger than 1.67mA and less than 25mA (the most a PIC can output). Let Ib = 10mA

Ib = 10mA

Rb = 


5V−0.7V

10mA


 = 430Ω

Rb doesn't have to be exactly 430 Ohms. 470 Ohms works. 330 Ohms works.

+12V

Rc

5W

LED

6144

Rb = 430

NPN

500mA

PIC

10.6

Ib = 10mA

5V = on

0V = off

Timing:

6) Write a program which outputs the music note G#3 (207.652 Hz)

Verify the frequency of the square wave you generate

(Pano Tuner app on you cell phone works well for this)

The duration of the wait loop needs to be 24,078.747 clocks

N = 


10,000,000

2⋅Hz

 = 24, 078.747

One way to do this is to have three nested wait loops:

Wait: movlw A

; 4 clocks

movwf CNT0

W1: movlw B

; 5 clocks * A

movwf CNT1

W2: nop

; 10 clocks * A * B

nop

nop

nop

nop

nop

nop

decfsz CNT1,F

goto W2

decfsz CNT0,F

goto W0

return

The total time spend in the wait loop is

N = 10AB + 5A + 4

Come up with integers which are in the range of (1..255) and the product is close to 24,078,747. In

Matlab, you can find the best combination (not necessary - just showing off)

% Matlab Code

minE = 9999

for a = 1:255

 for b = 1:255

 N = 10*a*b + 5*a + 4;

 E = abs(24078.7 - N);

 if(E < minE)

 minE = E;

 A = a;

 B = b;

 [A,B,N]

 end

 end

end

This results in

A = 15, B = 160, N = 24,079

The resulting program is then

#include <p18f4620.inc>

; Variables

CNT0 EQU 1

CNT1 EQU 2

; Program

org 0x800

call Init

Loop:

incf PORTC,F

call Wait

goto Loop

; --- Subroutines ---

Init:

clrf TRISA

clrf TRISB

clrf TRISC

clrf TRISD

clrf TRISE

movlw 0x0F

movwf ADCON1 ;everyone is binary

return

Wait: movlw 15

movwf CNT0

W1: movlw 160

movwf CNT1

W2: nop

nop

nop

nop

nop

nop

nop

decfsz CNT1,F

goto W2

decfsz CNT0,F

goto W0

return

Lab: Lights-Out Game

7) Give the flow chart for a program to turn your PIC board into Lights-Out game

On power up, PORTC = 0xFF and PORTD = 0x00

When you press and release a button, the corresponding pin on PORTC and its neighbors are

toggeled

- RB0: Toggle pins RC0, RC1

- RB1: Toggle pins RC0, RC1, RC2

- etc.

Each time you press and release a button, PORTD increments by one

The goal of the game is to turn off all of the lights on PORTC in the minimum number of moves

Start

Initialize

PORTB=0?

Button

Toggle 7&6 Toggle 0&1

Increment PORTD

PORTB=0?

yes

no

RB7 RB0

yes

no

8) Write the corresponding assembler code

org 0x800

movlw 0xFF

movwf TRISB

clrf TRISC

clrf TRISD

movlw 0xFF

movwf PORTC

clrf PORTD

movlw 0x0F

movwf ADCON1

L1: movlw 0

cpfseq PORTB

goto L2

goto L1

L2: btfsc PORTB,7

goto B7

btfsc PORTB,6

goto B6

btfsc PORTB,5

goto B5

btfsc PORTB,4

goto B4

btfsc PORTB,3

goto B3

btfsc PORTB,2

goto B2

btfsc PORTB,1

goto B1

B0: movlw 0x03

xorwf PORTC,F

goto L3

B1: movlw 0x07

xorwf PORTC,F

goto L3

B2: movlw 0x0E

xorwf PORTC,F

goto L3

B3: movlw 0x1C

xorwf PORTC,F

goto L3

B4: movlw 0x38

xorwf PORTC,F

goto L3

B5: movlw 0x70

xorwf PORTC,F

goto L3

B6: movlw 0xE0

xorwf PORTC,F

goto L3

B7: movlw 0xC0

xorwf PORTC,F

goto L3

L3: incf PORTD,F

L4: movlw 0

cpfseq PORTB

goto L4

goto L1

end

Start

Initialize

PORTB=0?

Button

Toggle 7&6 Toggle 0&1

Increment PORTD

PORTB=0?

yes

no

RB7 RB0

yes

no

L1

L2

B7 B0

L3

L4

9) Test your code.

Compile and program your PIC board

Verify each button's operation

Checking:

RB0 toggles lights 0,1 (check)

RB1 toggles lights 0,1,2 (check)

:

RB6 toggles lights 5,6,7 (check)

RB7 toggles lights 6,7 (check)

PORTD counts with each button press (check)

There are some double counts, though. Adding debouncing would be good.

10) (20 points) Demonstration

In-person of with a video

Lights-Out Game: As you press a button, that light and it's neighbors toggle on PORTC

