ECE 376 - Final Exam: Name

Open book. open notes

1) Hardware: Digital (0V/5V) signals are easy for a microcontroller to work with. Analog signals are more difficult. Design a circuit which converts a sine wave ranging from 2.0V to 4.0V into a TTL 0V/5V square wave at the same frequency as shown.

- Input: Analog sine wave going from 2.0V to 4.0V.
- Output: 0V/5V square wave

A comparitor or Schmitt trigger would work. Assume a comparitor:

- Send x(t) to the plus input
- Send 3.00V to the minus input (anything in the range of -2V to +4V works)

2) Hardware: Binary Outputs. A 5W yellow LED is to be used to create an electronic candle. Design a circuit which allows a PIC to turn on and off the LED

- Off: Id = 0mA
- On: Id = XmA where X is your birth date

Assume

- The LED has Vf = 5.0V @ 1A, Output = 5000 Lumens @ 1A
- A 6144 NPN transistor with β =300, Vce(sat) = 0.2V
- $X = 900 + 100^{*}$ (your birth month) + (your birth date). May 14th would give X = 1414mA.

For your circuit, determine the following:

X (mA) 900 + 100*mo + day	Lumens when LED is on	Rc	Rb	Ib when the PIC outputs 5V
1414mA varies	7070 varies	3.3946 Ohms answers vary	430 Ohms	10mA

Lumens:

$$L = \left(\frac{1414mA}{1000mA}\right) 5000 \text{ lumens}$$

$$L = 7070$$
 lumens

Rc:

$$R_c = \left(\frac{10V - 5.0V - 0.2V}{1414mA}\right) = 3.3946\Omega$$

Ib: Pick Ib to be in the range of

- 25mA (max a PIC can output) • $\left(\frac{1414mA}{300}\right) = 4.713mA$
- Let Ib = 10mA

Rb is then

$$R_b = \left(\frac{5V - 0.7V}{10mA}\right) = 430\Omega$$

) C Coding. The following flow chart counts the number of times button RB0 is pressed:

- N = the number of button presses
- When N matches your birth month (1..12), the lights on PORTC turn on
- When N matches your birth day (1..31), the lights on PORTD turn on

Write the corresponding C code

```
unsigned char N, Mo, Day;
Mo = 5;
Day = 14;
TRISB = 0xFF;
TRISC = 0;
TRISD = 0;
ADCON1 = 0 \times 0F;
while(1) {
   while(RB0);
   while(!RB0);
   N += 1;
   if(N == Mo) PORTC = 0xFF;
   else PORTC = 0;
   if(N == Day) PORTD = 0xFF;
   else PORTD = 0;
   }
```


4) Subroutines & C Coding: The signals a PIC sends to a sensor are as follows. Write a C program which outputs the data 001x to the sensor where x is either 1 or 0 depending upon what is passed to the subroutine. Assume RC0 / RC1 / RC2 are all output pins

void Sensor(unsigned char x) {

RC0	=	1;
RC1	=	0;
RC2	=	0;
RC0	=	0;
RC2	=	1;
RC1	=	1;
RC1	=	0;
RC2 RC1 RC1	= =	1; 1; 0;
RC2	=	0;
RC1	=	1;
RC1	=	0;
RC2	=	x;
RC1	=	1;
RC1	=	0;
RC0	=	1;
}		

5) Interrupts: Using interrupts

- Count how many times you press a button (detect rising edge on A)
- Clear the count when you press B
- When the count is equal to your birth month, play 100Hz for one second on RC0
- When the count is equal to yor birth date, play 200Hz for two seconds on RC1

Specify the interrupts used and how they're set up

Inp	outs	Out	puts
A count	B clear count	100Hz for 1 second	200Hz for 2 seconds
INTO	INT1	Timer0 (Hz) Timer2 (time)	Timer1 (Hz) Timer2 (time)

Write the corresponding interrupt service routines

Ing	outs	Out	puts
A count on A	B clear count on B	100Hz for 1 second	200Hz for 2 seconds
<pre>if(INTOIF) { N += 1; if(N == 5) Tc = 1000; if(N == 14) Td = 2000; INTOIF = 0; }</pre>	<pre>if(INT1IF) { N = 0; Tc = 0; Td = 0; INT1IF = 0; }</pre>	<pre>if(TMR2IF) { if(Tc) Tc -= 1; if(Td) Td -= 1; TMR2IF = 0; if(TMR0IF) { TMR0 = -50000; if(Tc) RC0 = !RC0; TMR0IF = 0; } </pre>	<pre>if(TMR1IF) { TMR1 = -25000; if(Td) RC1 = !RC1; TMR1IF = 0; }</pre>

6) Interrupt Stoplight: Write the interrupt routines to drive a stoplight with four different modes:

Input: Push Button

• Each time you press, you switch from mode: $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow repeat$

Output: LEDs

- Red = RD2
- Yellow = RD1
- Green = RD0

Mode:

- 0: Normal Mode. Cycle from green (5s) to yellow (1s) to red (6s) and repeat
- 1: Stop: Solid red (green and yellow off0
- 2: Flashing Red: Turn the red light on and off every 1 second. (Y/G off)
- 3: Flashing Yellow: Turn the yellow light on and off every 1 second. (R/G off)

Specify the interrupts used (one or more)

Interrupt #1 Interrupt name, set-up (PS, edge, etc)	Interrupt #2 (optional) Interrupt name, set-up (PS, edge, etc)
INTO	Time0
Rising Edge	1 second
	PS = 256

Specify the interrupt service routine(s). The main routine does nothing.

Interrupt #1	Interrupt #2 (optional)
<pre>Interrupt #1 if(INT0IF) { Mode = (Mode + 1) % 4; INT0IF = 0; } </pre>	<pre>Interrupt #2 (optional) if (TMR0IF) { TMR0 = -39062; if (Mode == 0) { Time = (Time + 1) % 12; if (Time < 5) PORTD = 1; else if (Time < 6) PORTD = 2; else PORTD = 4; } if (Mode == 1) PORTD = 4; if (Mode == 2) { RD1 = 0; RD2 = !RD2; } if (Mode == 3) { RD2 = 0; RD1 = !RD1; RD0 = 0; } TMR0IF = 0; } } </pre>
	}

