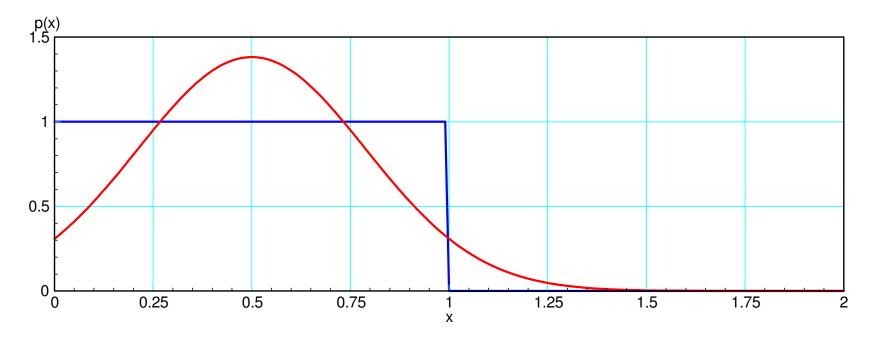

Central Limit Theorem ECE 341: Random Processes Lecture #19

note: All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com

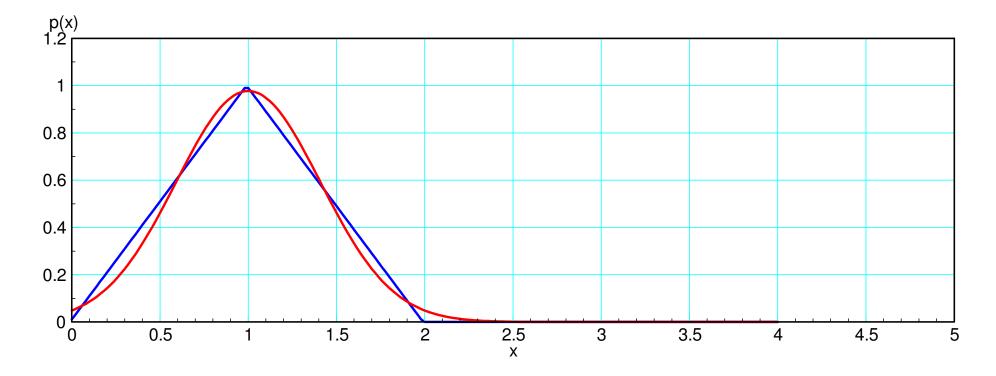
Central Limit Theorem

- One of the most important theorems in statistics
- It basically says that all distributions coverage to a normal distribution.

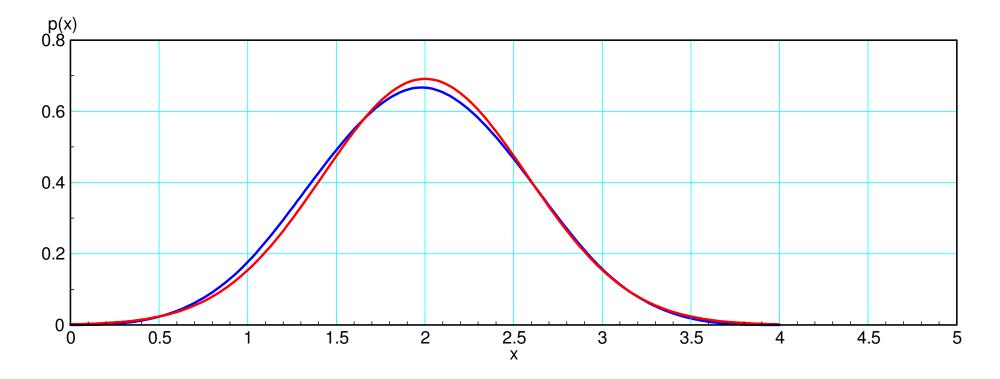

This is one of the reasons engineers tend to assume everything is described by a normal distribution (even when a Poisson distribution is more accurate). It also allows you to determine the probability for some fairly complex problems fairly accurately.

Example: Uniform Distribution.

Let A be a uniform distribution over the range of (0, 1).


- Plot the pdf of A (blue)
- Plot the pdf of a Normal distribution with the same mean and variance (red)
- The two are different.

Uniform Distribution (blue) and it's normal approximation (red)

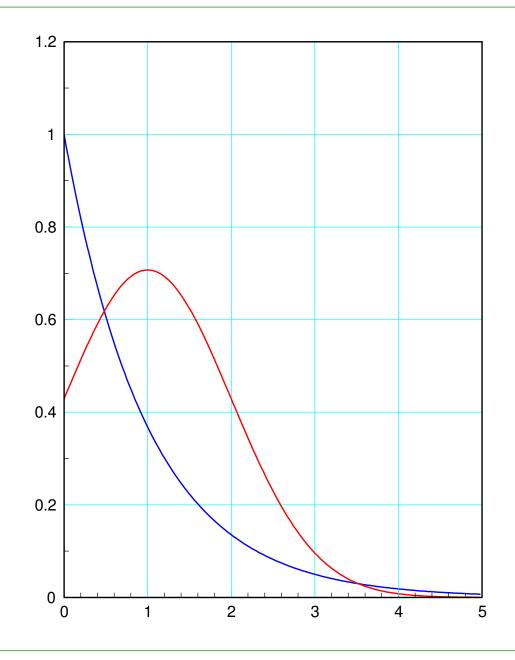

Summing two uniform distributions

- Blue = pdf of summing two uniform distributions
- Red = Normal distribution with the same mean and variance
- Getting closer after only two summations

Summing four uniform distributions

- Blue = pdf of summing two uniform distributions
- Red = Normal distribution with the same mean and variance
- Very close after only four summations

Example 2: Exponential pdf


Exponential Distribution (blue)

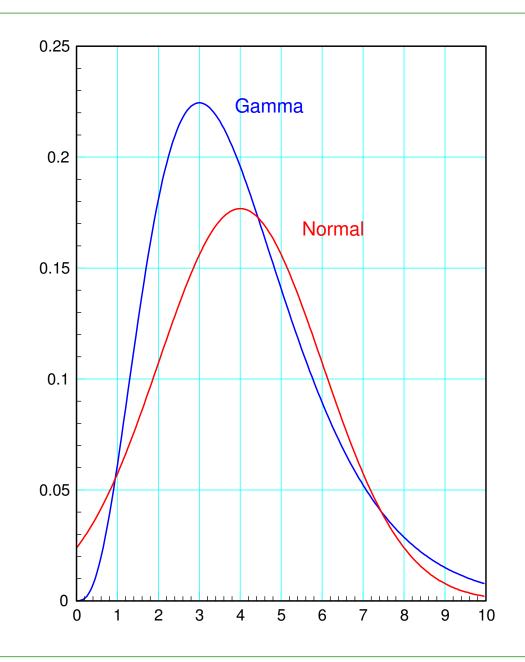
- Mean = 1
- Variance = 1

Normal Distribution (red)

- Mean = 1
- Variance = 1

Not very close

Exponental pdf (cont'd)


Gamma Distributions (blue)

- Sum of 4 exponential pdf's
- Mean = 4
- Variance = 4

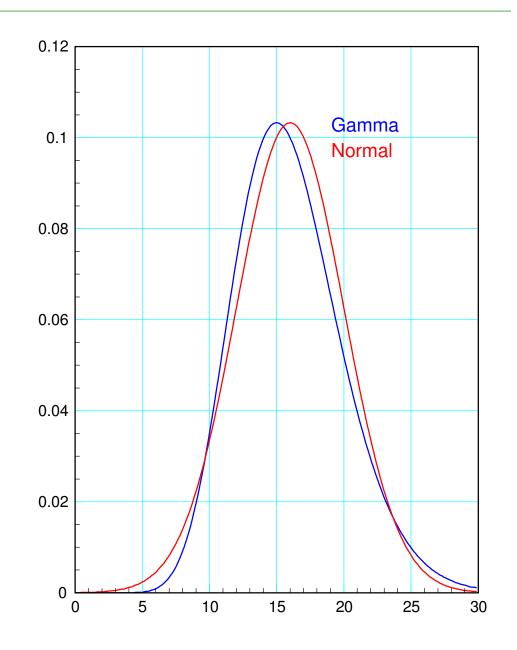
Normal Distribution (red)

- Mean = 4
- Variance = 4

Getting closer, but still different

Exponental pdf (cont'd)

Gamma pdf (blue)


- Sum 16 exponential distributions
- Mean = 16
- Variance = 16

Normal Distribution (red)

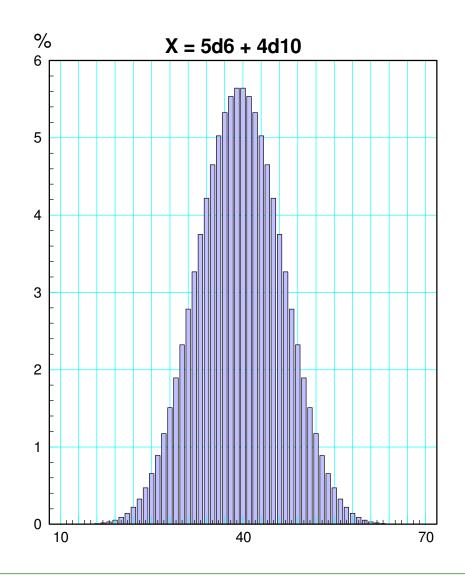
- Mean = 16
- Variance = 16

Gamma is approaching a normal pdf

• Central Limit Theorem

Central Limit Theorem:

The sum of any distribution converges to a normal distribution.

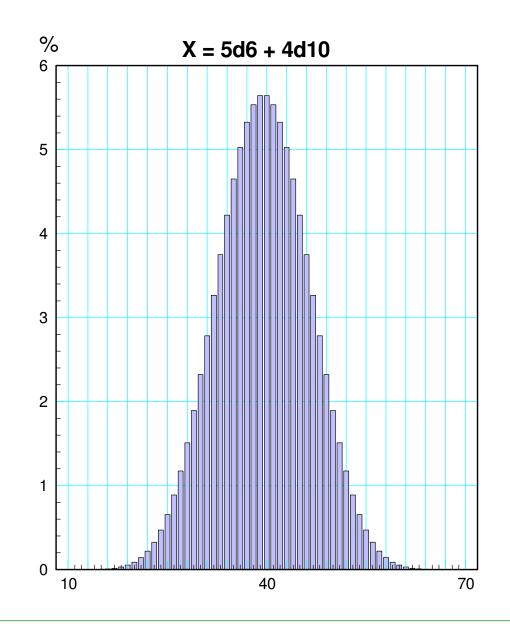

Example 1: Central Limit Theorem with Dice

Let Y = 5d6 + 4d10

- Roll five 6-sided dice (5d6)
- Roll four 10-sided dice (4d10)
- Take the sum

What is the probability of

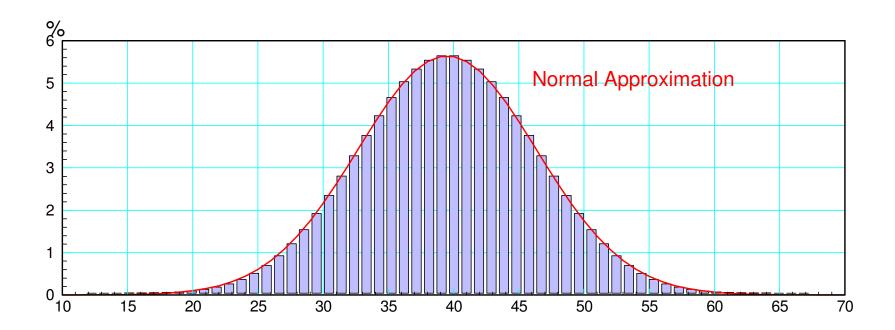
- rolling 45?
- rolling 45 or higher?
- rolling 50 or higher?


Exact Solution:

Use convolution

```
d6 = [0, ones(1, 6)];
d10 = [0, ones(1, 10)];
d6x2 = conv(d6, d6);
d6x4 = conv(d6x2, d6x2);
d6x5 = conv(d6x4, d6);
d10x2 = conv(d10, d10);
d10x4 = conv(d10x2, d10x2);
pdf = conv(d6x5, d10x4);
pdf = pdf / sum(pdf);
```

Exact Answers:


pdf (46)	ans =	0.0422
sum(pdf(46:71))	ans =	0.2382
sum(pdf(51:71))	ans =	0.0748

Solution using the Central Limit Theorem.

The mean and standard deviation of a 6 and 10 sided die are

	d6	5d6	d10	4d10	5d6+4d10
mean	3.50	17.50	5.50	22.00	39.50
variance	2.9167	14.08	8.250	33.00	47.08

What is the probability of rolling 45?

Normal Aproximation	Matlab Command Window
Interprit as: p(44.5 < y < 45.5) Find the z-score for • y = 44.5 • y = 45.5	Matlab Command Window >> x = 39.50; >> s = sqrt(47.08); >> z1 = (44.5 - x) / s z1 = 0.7287 >> p1 = (1 - erf(z1/sqrt(2)))/2 p1 = 0.2331 >> z2 = (45.5 - x) / s z2 = 0.8744
 Find the area of the tail in each case p = 0.2331 p = 0.1909 	<pre>>> p2 = (1 - erf(z2/sqrt(2)))/2 p2 = 0.1909 >> p1 - p2 ans = 0.0422</pre>
Take the difference • p = 0.0422 There is a 4.22% chance	
• exact answer = 4.22%	

What is the probability of rolling 45 or more?		
Normal Aproximation	Matlab Command Window	
Interprit as p(y > 44.5) Find the z-score for y = 44.5 • z = 0.7287	<pre>>> x = 39.50; >> s = sqrt(47.08); >> z = (44.5 - x) / s z = 0.7287 >> p = (1 - erf(z/sqrt(2)))/2 p = 0.2331</pre>	
Find the area of the tail • $p = 0.2331$		
<pre>There is a 23.31% chance • exact answer = 23.82%</pre>		

Normal Aproximation	Matlab Command Window
Interprit as $p(y > 49.5)$	>> x = 39.50; >> s = sqrt(47.08); >> z = (49.5 - x) / s
Find the z-score for y = 49.5 • z = 1.4574	z = 1.4574
	>> p = (1 - erf(z/sqrt(2)))/2
 Find the area of the tail p = 0.0725 StatTrek also works 	p = 0.0725
<pre>There is a 7.25% chance • exact answer = 7.48%</pre>	

What is the probability of rolling 50 or more?

Example 2: Uniform Distribution.

- Let A1 .. A10 be uniform distributions over the interval (0, 1).
- Let X be the sum of A1 .. A10.

What is the probability that the sum is more than 6? More than 7?

Solution: Convolution with matlab.

dx = 0.01; x = [0:dx:2]'; A = 1*(x < 1); A2 = conv(A, A) * dx; A4 = conv(A2, A2) * dx; A8 = conv(A4, A4) * dx; A10 = conv(A2, A8) * dx; sum(A10(600:2000)) * dx ans = 0.1306 sum(A10(700:2000)) * dx ans = 0.0121

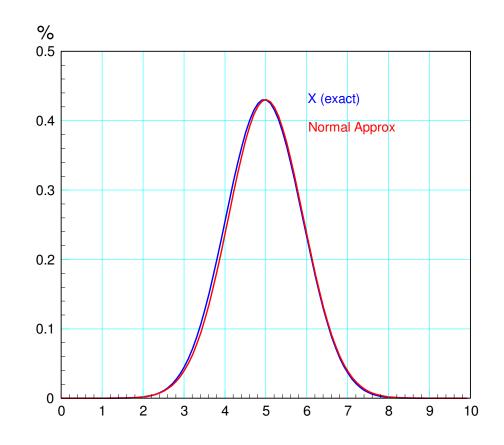
Solution: Monte-Carlo Simulation

```
N6 = 0;
N7 = 0;
for i=1:1e5
  X = sum(rand(1,10));
  if(X > 6)
     N6 = N6 + 1;
  end
  if(X > 7)
     N7 = N7 + 1;
  end
end
[N6, N7] / 1e5
  p(y>6) p(y>7)
```

0.1388	0.0137	monte-carlo
0.1306	0.0121	convolution

Solution: Normal Approximation

	Uniform(0,1)	10 x Uniform
mean	1/2	10/2
variance	1/12	10/12


The z-score for 6.00 is

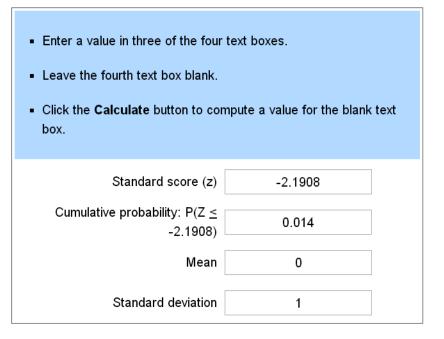
 $z = \left(\frac{6-5}{0.9129}\right) = 1.0954$

>> z = (6-5)/sqrt(10/12);
>> p = (1 - erf(z/sqrt(2)))/2
p = 0.1367

This corresponds p = 0.1367

- Normal Approx: 0.1367
- Computed: 0.1306
- Monte Carlo: 0.1388

The z-score for rolling 7.00 or higher is


$$z = \left(\frac{7-5}{0.9129}\right) = 2.1908$$

This corresponds to a probability of 0.0142

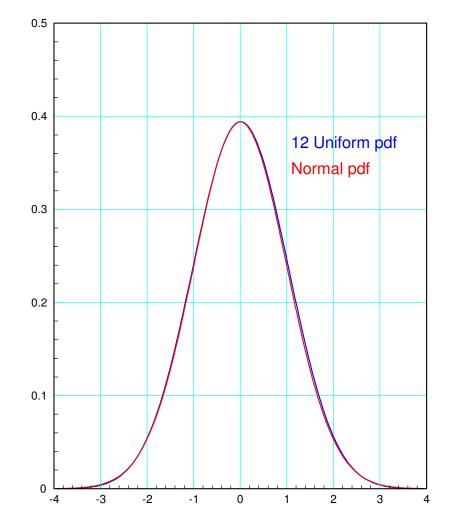
- Normal Approx: 0.0142
- Computed: 0.0121
- Monte Carlo: 0.0137

In Matlab

p = 0.0142

Example 3: Uniform approximation for a Normal Distribution

- It is easy to compute random numbers over the range of (0,1)
- How do you generate a random number with a standard normal distribution?


Solution:

A uniform distribution has

- mean = 1/2
- variance = 1/12
- Sum twelve uniform distributions and subtract six
 - mean = 0
 - variance = 1

Its very difficult to tell the difference

• Central Limit Theorem in action

Summary

Summing pdf's converge to a normal distribution

• Central Limit Theorem

Likewise, you can approximate many pdf's with a normal distribution

This lets you determine probabilities fairly easily using a standard normal table

- or StatTrek
- or Matlab's erf() function

p = (1 - erf(z/sqrt(2)))/2