Exponential Distribution ECE 341: Random Processes

note: All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com

Exponential Distribution

Another common continuous probability distribution is the exponential distribution. With this distribution, the pdf is exponential:

 $f_X(x) = \begin{cases} a \ e^{-ax} & 0 < x < \infty \\ 0 & otherwise \end{cases}$

pdf for an exponential distribution

Examples of where this type of distibution is encountered is:

- Probability that the length of a telephone call is less than x minutes
- Probability that the next atom will decay within x seconds
- Time it takes for the next customer to arrive at a store
- Time it takes to serve the next customer

Exponential distributions also lead into queueing theory:

• How long a customer will have to wait in line to be served.

Parameters of Exponential Distributions

pdf: As stated before

 $pdf(x) = a e^{-ax}$

cdf: The cdf is the integral of the pdf $cdf(x) = \int_0^x (a \ e^{-at}) \ dt$ $cdf(x) = 1 - e^{-ax}$ x > 0

Moment Generating Function:

 $\Psi(s) = \left(\frac{a}{s+a}\right)$

To be a valid probability distribution:

 $m_0 = \psi(s=0) = 1 = \left(\frac{a}{a}\right)$

Mean: The mean of an exponential distribution is

$$\mu = \int_0^\infty p(x) \ x \ dx = \int_0^\infty (ae^{-ax}) \ x \ dx = \left(\frac{1}{a}e^{-ax}(-ax-1)\right)_0^\infty = \left(\frac{1}{a}\right)$$
$$\mu = m_1 = -\psi'(0) = \left(\frac{a}{(s+a)^2}\right)_{s=0} = \frac{1}{a}$$

Variance: Use the moment generating function - it's a lot easier

$$m_2 = -\psi''(0) = -\frac{d}{ds} \left(\frac{a}{(s+a)^2}\right)$$
$$m_2 = -\frac{d}{ds} \left(\frac{a}{(s+a)^2}\right)_{s=0} = \left(\frac{2a}{(s+a)^3}\right)_{s=0} = \left(\frac{2}{a^2}\right)$$

$$\sigma^2 = m_2 - m_1^2$$

$$\sigma^2 = \left(\frac{2}{a^2}\right) - \left(\frac{1}{a}\right)^2 = \left(\frac{1}{a^2}\right)^2$$

Matlab Example:

Use the cdf:

$$cdf(x) = \int_0^x pdf(t) dt = (1 - e^{-ax})u(x)$$
$$x = -\left(\frac{1}{a}\right)\ln(1 - p)$$

In matlab

р	=	rand(10),1);
a x	=	1; -(1/a)	* log(1-p)
		p 0.6862 0.9593 0.4850 0.7880 0.7550 0.7228 0.2646 0.6884 0.9323	x 1.1590 3.2004 0.6635 1.5511 1.4066 1.2831 0.3074 1.1660 2.6930

Example: A block of radioactive material is sitting next to a Geiger counter. In 30 minutes, the Geiger counter detects 100 atoms decaying. Determine the pdf and CDF for the time until the next atom decays (in minutes).

Solution: The average number of atoms decaying per minute is

$$\overline{x} = \frac{100 \text{ atoms}}{30 \text{ minutes}} = 3.33 \frac{\text{atoms}}{\text{min}} = \frac{1}{a}$$
$$a = 0.3$$

pdf:

$$f_X(x) = \begin{cases} 0.3 \cdot e^{-0.3x} & 0 < x < \infty \\ 0 & otherwise \end{cases}$$

CDF:

$$F_X(x) = \begin{cases} 1 - e^{-0.3x} & 0 < x < \infty \\ 0 & otherwise \end{cases}$$

Matlab

```
x = [0:0.01:20]';
p = 0.3 * exp(-0.3*x);
C = 1 - exp(-0.3*x);
plot(x,p,x,C)
xlabel('Minutes');
ylabel('Probability');
```


pdf (blue) and CDF (green) for time until you detect an atom decaying

Queueing Theory

- Application of exponential distributions
- How many servers are needed at a restaraunt?
- For example, assume
 - Customers arrive at a fast-food restaraunt with
 - An exponential distribution, with
 - An average of one customer every minute.
 - The time it takes to serve a customer is
 - An exponential distribution with
 - An average of 30 seconds per customer

How long will the longest wait be for a 1 hour shift?

Start with the first customer

Matlab Script Window	Matlab Command Window				
N = 5;					
	Tarr	Tser	Twait	Tdone	Q
Tarr = zeros(N,1);	68.77	68.77	0	196.52	0
Tser = zeros(N,1);	0	0	0	0	0
Tdone = zeros(N,1);	0	0	0	0	0
Twait = zeros(N,1);	0	0	0	0	0
Queue = zeros(N,1);	0	0	0	0	0
% Start with the first customer					
n = 1;					
Tarr(n) = -60*log(1 - rand);					
Tser(n) = Tarr(n);					
Twait(n) = 0;					
Tdone(n) = Tser(n) - 30*log(1-rand);					
Queue(n) = 0;					
[Tarr, Tser, Twait, Tdone, Queue]					

Add more customers

Tarr: time of previous customer + exponential time with mean of 60 seconds

Tser: The time customer is served. Whichever is larger

- Time customer arrived
- Time previous customer was done

Tdone: Time customer was served + Time it takes to finish that customer's order

Matlab Script Window	Matlab Command Window					
<pre>for n=2:N Tarr(n) = Tarr(n-1) - 60*log(1-rand); Tser(n) = max(Tarr(n), Tdone(n-1)); Tdone(n) = Tser(n) - 30*log(1-rand); end</pre>	arriveservewaitdonequeue31.031.0050.3045.150.3083.20130.1130.10145.40					
[Tarr, Tser, Twait, Tdone, Queue]	140.4 145.4 0 166.2 0 146.1 166.2 0 201.9 0					

Compute Wait Time & Queue Size

Wait time

• Time from arriving to being served

Queue Size

- Number of customers still there when you arrive
- Their finish time is after you arrived

Matlab Script Window	Matlab Command Window				
<pre>for n=2:N Tarr(n) = Tarr(n-1) - 60*log(1-rand); Tser(n) = max(Tarr(n), Tdone(n-1)); Tdone(n) = Tser(n) - 30*log(1-rand); Twait(n) = Tser(n) - Tarr(n); Queue(n) = sum(Tdone(1:n-1)>Tarr(n)); end</pre>	arrive 10.8 91.6 107.6 141.4 208.1	serve 10.8 91.6 160.7 168.2 208.1	wait 0 53.0 26.7	done 12.8 160.7 168.2 169.7 212.0	queue 0 0 1 2 0

Total Matlab Code

Matlab Script Window	Matlab Command Window				
N = 30;	arrive	serve	wait	done	queue
	0.3	0.3	0	8.2	0
Tarr = zeros(N, 1);	10.1	10.1	0	26.1	0
There = $zeros(N, 1);$	33.4	33.4	0	134.4	0
Twait = zeros $(N, 1)$;	116.6	134.4	17.8	160.4	1
Oueue = $zeros(N, 1)$;	209.0	209.0	0	220.1	0
	229.2	229.2	0	233.7	0
% Start with the first customer	239.5	239.5	0	253.8	0
n = 1;	245.7	253.8	8.1	265.0	1
Tarr(n) = -60*log(1-rand);	343.4	343.4	0	387.5	0
Tser(n) = Tarr(n);	358.9	387.5	28.6	417.5	1
Tdope(n) = Tser(n) - 30*log(1-rand)	429.5	429.5	0	438.0	0
Oueue(n) = 0;	479.8	479.8	0	512.1	0
for $n=2:N$	540.4	540.4	0	543.5	0
Tarr(n) = Tarr(n-1) - 60*log(1-rand);	590.8	590.8	0	674.2	0
Tser(n) = max(Tarr(n), Tdone(n-1));	610.8	674.2	63.4	755.4	1
Tdone(n) = Tser(n) - 30*log(1-rand);	655.7	755.4	99.8	759.3	2
Twait(n) = Tser(n) - Tarr(n);	671.0	759.3	88.3	763.4	3
<pre>gueue(II) = Sum(Idone(I:II=I)>IdII(II)); end</pre>	835.4	835.4	0	871.1	0
Circ	854.7	871.1	16.4	892.7	1
[Tarr, Tser, Twait, Tdone, Queue]	857.9	892.7	34.8	956.8	2

Data Analysis

The maximum wait time is important

- If customers wait too long, they'll leave
 - lost revenue
- If the max queue size is too large, customers will turn around and leave
 - lost revenue

If either of these numbers get too large

- Hire more servers
- Open more cash registers

If these numbers are too small

- Tell servers to check out
- Reassign people working the cash registers

Matlab Command Window >> max(Twait) ans = 187.7314 >> max(Queue)

ans = 4

Waiting Time

When customers arrive faster than it takes to complete an order, the waiting time increases without limit

• red line

When orders are filled 20% faster than customers arrive,

- Max wait = 478 seconds
- purple line

When orders are filled 60% faster

- Max wait = 108 seconds
- blue line

Max Queue Size

When orders are filled 20% slower than customers arrive

- The queue size grows
- red line

When orders are filled 20% faster

- The max queue size was 8
- purple line

When orders are filled 60% faster

- The max queue size was 3
- blue line

Summary

Exponential distributions model many systems

- Time of a phone call
- Time until an atom decays
- Time until the next customer arrives

Queeing theory is based upon exponential distributions

• Used to determine expected wait times queue sizes in stores and restaraunts