
Uniform Distribution

ECE 341: Random Processes
Lecture #9

note:  All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com



Definitions:
Uniform Distribution: The probability of each valid outcome is the same.

Geometric Distribution: The number of Bernoilli trials until you get a success

Pascal Distribution: The number of Bernolli trials until you get r successes
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Uniform Distribution:

A Bernoulli trial where 

There are n possible outcomes (rather than just two), and

All outcomes have the same probability.
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pdf for a uniform distribution (6-sided die)



Examples:
Drawing a card from a deck of cards (each has a probability of 1/52)

A number coming up in Roulette (1 in 31 in Vegas, 1 in 32 in Atlantic City)

A number coming up in the lottery (1 in 78,960,960)

Being selected for jury duty (1 in 15,000.  Ten people are selected from a county

population of 150,000)

There are some betting schemes which take advantage of processes which are

supposed to be uniform but are not.  For example, about 15 years ago,

someone watched which numbers came up in Roulette in Vegas and found

that some numbers were more common that others.  He/she (I forget which)

won money with this scheme.  Now, the roulette wheels are mixed every night

(under tight security) and you are not allowed to watch and take notes.



Properties of a Uniform Distribution: (a,b)
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note:  If you add two distributions

The means add

The variances add



Dungeons & Dragons

If you're into Dungeons and Dragons, you're use to rolling lots of dice

Different spells do different amounts of damage

2d8 means the sum or rolling two 8-sided dice

Spell Name Level Damage Type Damage

Frostbite 0 Cold 1d6

Thunderous Smite 1 Thunder 2d6

Mind Whip 2 Psychic 3d6

Thunder Step 3 Thunder 3d10

Ice Storm 4 Bludgeoning + Cold 2d8 + 4d6

Chain Lightning 6 Lightning 10d8

Meteor Swarm 9 Bludgeoning + Fire 20d6 + 20d6



Frostbite:  (1d6)
Druid, sorcerer, warlock, wizard 

Level 0

1d6 cold damage

The pdf for 1d6 is:

Die Roll: x 0 1 2 3 4 5 6 7+

p(x) 0 1/6 1/6 1/6 1/6 1/6 1/6 0

This is a delta function at numbers (1..6)
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Mean & Variance:  1d6

The mean and variance are:
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Thunderout Smite (2d6)
Paladin spell

Level 1

Weapon does an additional 2d6 of thunder damage

There are several ways to compute the pdf for 2d6

Monte-Carlo

Enumeration

Moment-Generating Functions

Convolution (preferred)



2d6: Monte-Carlo
Option #1

Matlab Code Result:  p(x) * 36

Damage = zeros(12,1);
for n=1:1e6
  N = sum( ceil(6*rand(2,1)));
  Damage(N) = Damage(N) + 1;
end

Damage = Damage / 1e6;

k = [1:12]';
[k,Damage*36]

Damage  M-Carlo  
    1         0  
    2    0.9905       
    3    1.9993       
    4    3.0073       
    5    3.9918       
    6    5.0194       
    7    6.0026  
    8    5.0032  
    9    3.9948  
   10    2.9965  
   11    1.9959  
   12    0.9986  



2d6: Enumeration
Option #2

Matlab Code Result: p(x) * 36

Damage = zeros(12,1);
for d1=1:6
    for d2 = 1:6
        Roll = [d1, d2];
        N = sum(Roll);
        Damage(N) = Damage(N) +
1;
    end
end
k = [1:12]';
[k,Damage]

Damage  M-Carlo   Enumeration
    1         0       0
    2    0.9905       1
    3    1.9993       2
    4    3.0073       3
    5    3.9918       4
    6    5.0194       5
    7    6.0026       6
    8    5.0032       5
    9    3.9948       4
   10    2.9965       3
   11    1.9959       2
   12    0.9986       1



2d6: Moment Generating Functions
Option #3

For 1d6:
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Multiplying polynomials is convolution

You're stuck using convolution



2d6: Convolution
4th option

d6 = [0,1,1,1,1,1,1]' / 6;
D  = conv(d6, d6);
k  = [0:length(D)-1]';
bar(k, D)
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2d6: Mean and Variance

These can be computed using the pdf:

x = sum(D .* k)
v = sum(D .* (k - x).^2)

x =     7
v =    5.8333

These can be computed by scaling 1d6
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2d6

µ = 2 ⋅ 3.5 = 7.000 σ2 = 2 ⋅ 2.9167 = 5.8333



Thunder Step (3d10)
Sorcerer Spell

Level 3

3d10 of thunder damage

You can find the pdf using convolution

Other methods work

d10 = [0,1,1,1,1,1,1,1,1,1,1]' /10;
d10x2 = conv(d10, d10);
d10x3 = conv(d10, d10x2);
D = d10x3;
k  = [0:length(D)-1]';
bar(k, D)



Thunder Step (3d10)

Mean and variance come from the pdf:
x = sum(D .* k)
v = sum(D .* (k - x).^2)
x =   16.5000
v =   24.7500

You can also compute this by scaling

1d10:
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3d10:

µ = 3 ⋅ 5.5 = 16.5

σ2 = 3 ⋅ 8.25 = 24.75
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Ice Storm: 2d8 + 4d6
Sorcerer / Wizard / Druid Spell

Level 4

2d8 bludgeoning damage plus 4d6 cold damage

Find the pdf for 2d8 + 4d6

Convolution works

Other methods work

d6 = [0,1,1,1,1,1,1]'/6;
d6x2 = conv(d6, d6);
d6x4 = conv(d6x2, d6x2);
d8 = [0,1,1,1,1,1,1,1,1]'/8;
d8x2 = conv(d8,d8);
D = conv(d6x4, d8x2);
k  = [0:length(D)-1]';

bar(k,D)



Ice Storm: Mean and Variance

Calculate from the pdf:

d6 = [0,1,1,1,1,1,1]'/6;
d6x2 = conv(d6, d6);
d6x4 = conv(d6x2, d6x2);
d8 = [0,1,1,1,1,1,1,1,1]'/8;
d8x2 = conv(d8,d8);
D = conv(d6x4, d8x2);
k  = [0:length(D)-1]';
x = sum(D .* k)
v = sum(D .* (k - x).^2)

x =   23.0000
v =   22.1667
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Ice Storm: Mean and Variance

You can also scale from a single die:

d6:
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4d6 + 2d8:

µ = 4 ⋅ 3.5 + 2 ⋅ 4.5 = 23.00 σ2 = 4 ⋅ 2.91667 + 2 ⋅ 5.25 = 22.1666

Same result



German Tank Problem

Switching gears a bit - here's another problem

related to uniform distributions.

Assume you have a population of size N

Each item is labeled with a unique number 1..N

Assume further, you collect k samples

from this population.

Each item has equal likelihood of being

sampled.

This is a uniform distribution

What is the value of N based upon these k

samples?



Origin of the German Tank Problem

The Allies had a problem in WWII

Sherman medium tanks could not stand up to

the German Panther and Tiger tanks

This led to the nickname "Tommy Cooker"

If the Germans had thousands of these

tanks, D-Day would have to be postponed

Pershing heavy tanks would be needed

These tanks would need to be built and shipped

If, on the other hand, Germany just had a

few hundred, D-Day could go on

Just not enough German tanks to change the

outcome



Sample of Size k

There was data

Captured German tanks had their

production numbers painted on the side

The gear boxes were also numbered

The tires were also numbered

Captured tanks provided a sample

Assume a random sample

Each tank has equal likelihood of being

captured

From this data, how many tanks exist?



Statistical Solution
N is the population size (highest number)

m is the largest number from the sampled data

k is the number of samples

Frequentist Approach:

N ≈ m + m

k
− 1

Baysian Approach:

N ≈ m +
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Baysian Confidence Interval
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Historical Results:
https://en.wikipedia.org/wiki/German_tank_problem

The monthly production of German tanks were estimated using

Statistics,

Allied Intelligence, and

Actual production numbers obtained after the war.

Results: 

Month Statistics Intelligence German Records

June 1940 169 1,000 122

June 1941 244 1,550 271

Aug 1942 327 1,550 342



Example:

Generate a population of size N

N is unknown

Shuffle and select 10 at random

Find

The maximum ID number (m)

The sample size (k)

>> N = round(200*rand) + 50;
>> X = rand(1,N);
>> [a,b] = sort(X);
>> Sample = b(1:10)

Sample =   122    98   173    
31    39    21   174    33   
151    91

>> m = max(Sample)
m =   174

>> k = length(Sample)
k =    10



Example: Estimate the sample size (N)

Frequentist Approach: >> N1 = m + m/k - 1
N1 =  190.4000

Baysian Approach: >> N2 = m + m*log(2)/(k-1)
N2 =  187.4008

Baysian Confidence Interval >> N3 = (m-1)*(k-1)/(k-2)
N3 =  194.6250

>> s2 = (k-1)*(m-1)*(m-k-1) / (
(k-3)*(k-2)^2 );

>> s = sqrt(s2)
s =   23.8012

>> Upper = N3+s
Upper =  218.4262

>> Lower = N3-s
ans =  170.8238



N is actually 213

Frequentist Approach: >> N1 = m + m/k - 1
N1 =  190.4000

Baysian Approach: >> N2 = m + m*log(2)/(k-1)
N2 =  187.4008

Baysian Confidence Interval >> N3 = (m-1)*(k-1)/(k-2)
N3 =  194.6250

>> s2 = (k-1)*(m-1)*(m-k-1) / (
(k-3)*(k-2)^2 );

>> s = sqrt(s2)
s =   23.8012

>> Upper = N3+s
Upper =  218.4262

>> Lower = N3-s
ans =  170.8238



Summary

Uniform distributions have equal probability for all possible outcomes.

A typical example is the result of rolling an N-sided die.

When you add dice together, you can find the pdf using

Monte-Carlo

Enumeration

Convolution

When adding dice together

The means add and

The variance adds

Given k samples from a numbered population of size N

You can estimate the size of the population using solutions to The German Tank Problem


