
z-Transforms

ECE 341: Random Processes
Lecture #7

note:  All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com



Recap: LaPlace Transforms 

LaPlace transforms are a tool which

Help with the analysis of differential equations, (Math 265)

Help with the analysis of RLC circuits with analog inputs (ECE 311), and

Help with the analysis of continuous probability density functions (ECE 341)

LaPlace transforms assume all functions are in the form of

y(t) = est

This turns differentiation into multiplication by 's'
dy

dt
= s ⋅ est = sY

'sY' can then be interprited to mean the derivative of y

LaPlace transforms turn differential equations in to algebraic equations in s.

The assumption is that algrbra is easier than calculus



LaPlace Transforms and
Differential Equations

LaPlace Transforms 

Converts differential equations into
algebraic equations

Turns convolution into multiplication

Example, solve for y(t):
d2y

dt2
+ 2

dy

dt
+ 10y = 5dx

dt
+ 10x

x(t) = 3e−2tu(t)

Go to the LaPlace domain

s2Y + 2sY + 10Y = 5sX + 10X

Y = 


5s+10

s2+2s+10


X = 


5s+10

s2+2s+10






3

s+2



Use a table to find y(t)
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LaPlace Transforms for Random Processes

Similarly, 

If we ever need to convolve to continuous
probability density functions (pdf),

Using the LaPlace transform will convert
convolution into multiplication

The LaPlace transform of a pdf is termed
its moment generating function

Statistics uses a different name, but it's just
the LaPlace transform

Coming soon in ECE 341 when we get to
continuous probablity density funcions
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z-Transforms

z-Transforms are a tool which

Help with the analysis of difference equations (ECE 434, ECE 376)

Help with the analysis of RLC circuits with digital inputs (ECE 461), and

Help with the analysis of discrete probability density functions (ECE 341)

z-transforms assume all functions are in the form of

y(k) = zk

This turns a time advance into multiplication by 'z'

y(k + 1) = zk+1 = z ⋅ y(k)

zY can then be though of as the next value of y(k)



z-Transforms and Difference Equations

z-Transforms

Convert difference equations into algebraic equations in z, and

Turn discrete-time convolution into multiplication

For example, find y(k)

y(k + 2) − 1.9y(k + 1) + 0.9y(k) = 0.02(x(k + 1) − x(k))

Convert to the z-domain

z2Y − 1.9zY + 0.9Y = 0.02(zX − X)

or

Y = 


0.02(z−1)

z2−1.9z+0.9


X



LaPlace and z-Transforms

If you're dealing with continuous
functions

in time

in probability

use LaPlace transforms.

If you're dealing with discrete functions

in time

in probability

use z-Transforms
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z-Transform Properties: 

www.wikipedia.com

The z-transform is defined as

X(z) = Σ
n=−∞

∞

xn ⋅ z−n

Linearity:

Z(axn + byn) = aX(z) + bY(z)

Proof:  The z-transform is

Z(axn + byn) = Σ
n=−∞

∞

(axn + byn) ⋅ z−n

Z(axn + byn) =


a Σ

n=−∞

∞

xn ⋅ z−n 


+


b Σ

n=−∞

∞

yn ⋅ z−n 


Z(axn + byn) = aX(z) + bY(z)



Time Shifting:

Z(xn−k) = z−k ⋅ X(z)

Proof:

Z(xn−k) = Σ
n=−∞

∞

xn−k ⋅ z−n

Let m = n-k

Z(xn−k) = Σ
m=−∞

∞

xm ⋅ z−(m+k)

Z(xn−k) = Σ
m=−∞

∞

xm ⋅ z−m ⋅ z−k

Z(xn−k) = z−k ⋅

 Σ

m=−∞

∞

xm ⋅ z−m


Z(xn−k) = z−k ⋅ X(z)

Multiplying by 1/z means delay the signal by one.



Convolution:

Z(xn ∗ ∗yn) = X(z) ⋅ Y(z)

Proof:

Z


 Σ

k=−∞

∞

xk ⋅ yn−k


 = Σ

n=−∞

∞ 

 Σ

k=−∞

∞

xk ⋅ yn−k


 ⋅ z−n

Change the order of summation:

= Σ
k=−∞

∞ 
 Σ

n=−∞

∞

xk ⋅ yn−k



⋅ z−n =


 Σ

k=−∞

∞

xk

 Σ

n=−∞

∞

yn−k




 ⋅ z−n

Let m = n-k

=


 Σ

k=−∞

∞

xk

 Σ

n=−∞

∞

ym




 ⋅ z−(m+k) =






 Σ

k=−∞

∞

xk ⋅ z−k 



 Σ

n=−∞

∞

ym ⋅ z−m





= X(z) ⋅ Y(z)

This is a biggie - z-transforms turn convolution into multiplication.



Table of z-Transforms:
function y(k)  (k > 0) Y(z)

delta
δ(k) =






1 k = 0

0 otherwise

1

unit step u(k) = 1 


z

z−1



ramp k 


z

(z−1)2




parabola k2 


z(z+1)

(z−1)3




cubic k3 


z(z2+4z+1)

(z−1)4




decaying exponential ak (
z

z−a)

k ak 


za

(z−a)2




k2 ak 


az(z+a)

(z−a)3




damped sinewave 2b ⋅ ak ⋅ cos (kθ + φ) ⋅ u(k) 


(b∠φ)z

z−(a∠θ)

 + 

(b∠−φ)z

z−(a∠−θ)





Proof:  Delta Function.  This is sort-of the definition of z-transform:

X(z) = Σ
n=−∞

∞

xn ⋅ z−n = ... + x0 ⋅ z0 + x1 ⋅ z1 + x2 ⋅ z2 + ...

If x(k) is a delta function:

X(z) = 1
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Proof:  Unit Step. Using a table:
z2 z1 z0 z-1 z-2 z-3 z-4

X(z) 0 0 1 1 1 1 1

z-1 X(z) 0 0 0 1 1 1 1

subtract


1 − 1

z

X(z)

0 0 1 0 0 0 0

so

X(z) = 1


1−1

z



= 


z

z−1


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Proof:  Decaying Exponential.  Using a table:
z2 z1 z0 z-1 z-2 z-3 z-4

X(z) 0 0 1 a a2 a3 a4

a * z-1 X(z) 0 0 0 a a2 a3 a4

subtract

(1 − a
z)X(z) 0 0 1 0 0 0 0

so

X(z) = 


1

1−a
z


 = (

z
z−a)
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Solving Functions in the z-Domain

Problem 1:  Find the step response of

Y = 


0.2z

(z−0.9)(z−0.5)

X

i) Replace X(z) with the z-transform of a step

Y = 


0.2z

(z−0.9)(z−0.5)





z

z−1



ii) Use partial fractions ( pull out a z - we'll need this )

Y = 


0.2z

(z−1)(z−0.9)(z−0.5)

 z

Y = 




4

z−1

 + 

−4.5

z−0.9

 + 

0.5

z−0.5



 z



Multiply through by z

Y = 




4z

z−1

 + 

−4.5z

z−0.9

 + 

0.5z

z−0.5





iii) Now apply the table entries

        k >= 0y(k) = 4 − 4.5 ⋅ (0.9)k + 0.5 ⋅ (0.5)k
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Problem 2:  Find the step response of a system with complex poles:

Y = 


0.2z

(z−0.9∠100)(z−0.9∠−100)


X

i)  Replace X with its z-transforrm (a unit step)

Y = 


0.2z

(z−0.9∠100)(z−0.9∠−100)






z

z−1



ii) Factor our a z and use partial fractions

Y = 




5.355

z−1

 + 

2.98∠153.970

z−0.9∠100


 + 

2.98∠−153.970

z−0.9∠−100




 z

iii)  Convert back to time using the table of z-transforms

           k >= 0y(k) = 5.355 + 4.859 ⋅ (0.9)k ⋅ cos (100 ⋅ k − 153.970)



Trick if the numberator does not have a z-term

Find the inverse z-transform for

Y = 


0.2

(z−1)(z−0.9)(z−0.5)



Multiply by z:

zY = 


0.2

(z−1)(z−0.9)(z−0.5)

 z

Do partial fractions

zY = 


4

z−1
− 5

z−0.9
+ 1

z−0.5

 z

zY = 


4z

z−1
− 5z

z−0.9
+ z

z−0.5





Take the inverse z-transform

zY = 


4z

z−1
− 5z

z−0.9
+ z

z−0.5



zy(k) = 
4 − 5(0.9)k + (0.5)k

 u(k)

Divide by z

time shift: delay by one

y(k) = 
4 − 5(0.9)k−1 + (0.5)k−1

 u(k − 1)

or equivalently

y(k) = 
4 − 5.555(0.9)k + 2(0.5)k

 u(k − 1)



Problem 3: Repeated Poles

Find the inverse z-transform for

X(z) = 


0.2(z+1)

(z−1)(z−0.9)2






Repeated Poles

Option 1:  With repeated poles, there will be three terms




0.2(z+1)

(z−1)(z−0.9)2


 = 


a

z−1

 + 

b

(z−0.9)2


 + 

c

z−0.9



a and b can be found using the cover-up method

a = 


0.2(z+1)

(z−0.9)2




z=1
= 40

b = 


0.2(z+1)

(z−1)



z=0.9
= −3.8



Repeated Poles

c can be found by placing over a common denominator




0.2(z+1)

(z−1)(z−0.9)2


 = 


a

z−1

 + 

b

(z−0.9)2


 + 

c

z−0.9






0.2(z+1)

(z−1)(z−0.9)2


 = 


a

z−1





(z−0.9)2

(z−0.9)2


 + 

b

(z−0.9)2






z−1

z−1

 + 

c

z−0.9





z−1

z−1





z−0.9

z−0.9



Matching the numerator terms

0.2(z + 1) = a(z − 0.9)2 + b(z − 1) + c(z − 1)(z − 0.9)

The z2 term has to match

0 = az2 + cz2

c = -a




0.2(z+1)

(z−1)(z−0.9)2


 = 


40

z−1

 + 

−3.8

(z−0.9)2


 + 

−40

z−0.9





Now take the inverse-z transform

X = 


40

z−1

 + 

−3.8

(z−0.9)2


 + 

−40

z−0.9



zX = 


40z

z−1

 + 

−3.8z

(z−0.9)2


 + 

−40z

z−0.9



zx(k) = 
40 − 3.8k(0.9)k − 40(0.9)k

 u(k)

Divide by z

x(k) = 
40 − 3.8(k − 1)(0.9)k−1 − 40(0.9)k−1 

 u(k − 1)



Repeated Poles (take 2)

You can also solve by first multiplying both sides by z2 to make the
numerator and denominator both 3rd order

z2X(z) = 


0.2z2(z+1)

(z−1)(z−0.9)2




Pull out a z

z2X = 


0.2z(z+1)

(z−1)(z−0.9)2


 z

Do a partial fraction expansion

z2X = 




a

z−1

 + 

b

(z−0.9)2


 + 

c

z−0.9



 z

time passes....

z2X = 




40

z−1

 + 

−3.42

(z−0.9)2


 + 

−39

z−0.9



 z



Repeated Poles (cont'd)

z2X = 


40z

z−1

 + 

−3.42z

(z−0.9)2


 + 

−39z

z−0.9



Take the inverse z-transform

z2x(k) = 
40 − 3.42k(0.9)k − 39(0.9)k

 u(k)

Divide by z2

x(k) = 
40 − 3.42(k − 2)(0.9)k−2 − 39(0.9)k−2 

 u(k − 2)

Both answers are the same



Time Value of Money

Borrow $100,000 at 6% interest for 10 years.

What are the monthly payments?

Solution:  

x(k) is how much money you owe

x(k+1) is how much you owe next month (p = monthly payment):

x(k + 1) = 1.005x(k) − p + X(0) ⋅ δ(k)

Take the z-transform (payments start at month #1 rather #0)

zX = 1.005X − p
1

z−1

 + X(0)



Solve

X = 


X(0)

z−1.005

 − p

1

(z−1)(z−1.005)



Using partial fractions

X = 


X(0)

z−1.005

 + p




200

z−1

 − 

200

z−1.005





zX = 


X(0)z

z−1.005

 + p




200z

z−1

 − 

200z

z−1.005





Converting back to the time domain

zx(k) = 1.005kX(0) − 200p(1.005k − 1)u(k)

x(k) = 1.005k−1X(0) − 200p(1.005k−1 − 1)u(k − 1)



After 10 years (k=120 payments), x(k) should be zero

You make 120 payments

At month 120, your balance is zero, meaning your loan is paid off

Your monthly payments are $1117.02

x(120) = 0 = $181, 034 − 162.069p

p = $1117.02



Summary

z-Transforms are similar to LaPlace transforms, but they deal with

Discrete-time systems

Discrete probability funcitons.

When dealing with difference equations or discrete-time events, z-transforms
will be useful.

In Signals and Systems, X(z) represents a signal

Its value at z = 1 can be anything

In Random Processes, X(z) represents a probabilty density function

0 <= x(k) <= 1  (probabilities can't be negative and must sum to one)


