Conditional Probability 5-Card Draw

ECE 341 Random Processes Lecture #5

Please visit Bison Academy for course syllabus, lecture notes, recorded lectures, homework sets, and solutions

www.BisonAcademy.com

5-Card Draw

Each player is dealt 5 cards

• 1st round of betting

Each player can dicard 0-5 cards

- Draw the same number of cards
- Results in a 5-card hand
- 2nd round of betting

Players reveal their hands

• Best hand wins

What are the odds of each hand?

Enumeration is now very difficult

• Up to 10 cards drawn per person

•
$$\binom{52}{10}$$
 = 15,829,924,220 different combinations

Further complicated by the number of cards drawn

- If you have a straight, a flush, or a full house, you'll draw zero cards
- If you have 3 of a kind, you might draw two cards
- If you have a pair, you might draw three cards
- If you have junk, you might draw five cards

This makes computations very difficult

• Use conditional probabilities

Conditional Probabilities (review)

$$p(A) = p(A|B)p(B) + p(A|C)p(C) + ...$$

Example:

- Player A rolls one die
- Player B rolls two dice and takes the maximum
- The highest number wins. A wins on ties.

What is the probability that A wins?

- 3 dice = 6^3 = 216 permutations
- Treat as a conditional probability

Step 1: Compute the p(B)

• 2 dice take the maximum

By enumeration

В	1	2	3	4	5	6
p(B)	1/36	3/36	5/36	7/36	9/36	11/36

B's Score 1st Die

2nd Die

_		1	2	3	4	5	6
	1	1	2	3	4	5	6
	2	2	2	3	4	5	6
	3	3	3	3	4	5	6
	4	4	4	4	4	5	6
	5	5	5	5	5	5	6
	6	6	6	6	6	6	6

Step 2: Compute the conditional probabilities

A wins		A's Roll						
		1	2	3	4	5	6	p(B)
B's Roll	1	1	1	1	1	1	1	1/36
	2	0	1	1	1	1	1	3/36
	3	0	0	1	1	1	1	5/36
	4	0	0	0	1	1	1	7/36
	5	0	0	0	0	1	1	9/36
	6	0	0	0	0	0	1	11/36

- $p(A) = p(A|B=1)p(B=1) + p(A|B=2)p(B=2) + p(A|B=3)p(B=3) + p(A|B=4)p(B=4) \dots$
- p(A) = (6/6)(1/36) + (5/6)(3/36) + (4/6)(5/36) + (3/6)(7/36) + (2/6)(9/36) + (1/6)(11/36)
- p(A) = 91/216

A has a 42.13% chance of winning this game

Draw Poker Odds

Treat as a conidtional probability

- p(4 of a kind) = p(4 of a kind | dealt 4 of a kind) p(dealt 4 of a kind)
- + p(4 of a kind | dealt 3 of a kind) p(dealt 3 of a kind)
- + p(4 of a kind | dealt pair) p(dealt a pair)
- + p(4 of a kind | dealt high card) p(dealt high card)

Repeat for all of the hand types

What we know

- From previous lecture
- p(B) for conditional probabilities

Poker Hand	COUNT	Odds Against	
Straight Flush	40	64,974	
Four of a Kind	624	4,165	
Full House	3,744	694.17	
Flush	5,108	508.8	
Straight	10,200	254.8	
Three of a Kind	54,912	47.33	
Two Pair	123,552	21.04	
One Pair	1,098,240	2.37	
High Card	1,302,540	2	
Total	2,598,960		

Conditional Probabilities (example)

Assume a fixed rule for the number of cards drawn

- Never attempts to draw to a flush
- Ignores straights (treated as high-card)

Poker hand	# cards drawn	
Straight Flush	0	
Four of a Kind	0	
Full House	0	
Flush	0	
Straight	4	
Three of a Kind	2	
Two Pair	1	
One Pair	3	
High Card	4	

Four-of-a-Kind:

Assume there are four ways you can end up with a 4-of-a-kind:

Start with

- A: 4-of-a-kind (and do nothing)
- B: 3-of-a-kind (draw 2 new cards)
- C: Pair (draw 3 new cards)
- D: High-Card hand (draw 4 new cards)

The probability of getting a 4-of-a-kind is

$$p(x) = P(x|A)p(A) + p(x|B)p(B) + p(x|C)p(C) + p(x|D)p(D)$$

A: Starting with 4-of-a-kind

The probability of ending up with a 4-of-a-kind is 1.000

$$p(x|A) = 1.000$$

B: Starting with 3-of-a-kind (draw 2 cards)

The number of ways you can draw 2 cards is

$$M = \left(\frac{47}{2}\right) = 1,081$$

The number of ways you can end up with a 4-of-a-kind is

- Of the one remaining card that matches the cards you keep, choose 1 (1 choose 1)
- Of the 46 remaining cards in the deck, choose 1 (46 choose 1)

$$N = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 46 \\ 1 \end{pmatrix} = 46$$

The odds are then

$$p(x|B) = \left(\frac{46}{1081}\right) = \frac{1}{23.5}$$

C: Starting with a pair and you draw 3 new cards

The number of ways you can draw 3 new cards is

$$M = \left(\frac{47}{3}\right) = 16,215$$

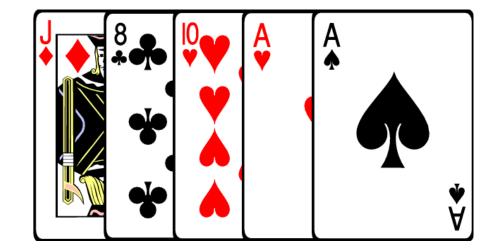
To end up with a 4-of-a-kind

- Of the 2 matching cards in the deck, pick two
- Of the remaining 45 cards, pick one

$$N = \binom{2}{2} \binom{45}{1} = 45$$

The odds of getting a four-of-a-kind is then

$$p(x|C) = \left(\frac{45}{16,215}\right) = \left(\frac{1}{360.33}\right)$$



D: High-Card Hand. Draw 4 new cards.

The number of ways to draw 4 cards

$$M = \begin{pmatrix} 47 \\ 4 \end{pmatrix} = 178,365$$

The number of ways to get 4 cards that match the one you kept

$$N = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 44 \\ 1 \end{pmatrix} = 44$$

The number of ways that the 4 cards you drew are all the same

$$N = 8$$

The odds are then

$$p = \frac{44+8}{178,365} = \left(\frac{1}{3430}\right)$$

Result: The probability of getting 4-of-a-kind with 5-card draw is thus

$$p(x) = P(x|A)p(A) + p(x|B)p(B) + p(x|C)p(C) + p(x|D)p(D)$$

$$p(x) = (1.000) \left(\frac{1}{4165}\right)$$

$$+\left(\frac{1}{23.5}\right)\left(\frac{1}{47.33}\right)$$

$$+\left(\frac{1}{360.33}\right)\left(\frac{1}{2.37}\right)$$

$$+\left(\frac{1}{3430}\right)\left(\frac{1}{2}\right)$$

high-card hand

$$p(x) = 0.002465 = \frac{1}{407.17}$$

Monte-Carlo Simulation

Repeat the previous program for 5-card draw. Add a block of code which

- Sorts the cards based upon their frequency (plus 0.1 * suit so the sort gives unique results)
- Keeps all cards that pair up (frequency > 1)
- Replaces all cards which don't have a pair with the next cards in the deck

Once you draw cards, then recompute how many cards match up (what kind of hand it is)

Matlab Code

Repeat 100,000 times

Monte-Carlo simulation

Start with a 5-card hand

Check for a flush

• Shows up an NS(1) = 5

Code ignores straights

• not quite correct

```
for games = 1:1e5
  X = rand(1,52);
   [a, Deck] = sort(X);
  Deck = Deck - 1;
   Hand = Deck(1:5);
   Top = 6;
  Value = mod(Hand, 13) + 1;
   Suit = floor(Hand/13) + 1;
% Check for a flush
  NS = zeros(4,1);
   for i=1:4
      NS(i) = sum(Suit == i);
      end
  NS = sort(NS, 'descend');
```

Matlab Code (continued)

Sort the hand based upon frequency of each card

F is

- Each card's frequency (1..5)
- Plus each card's value/100

Example:

```
Value = 6 5 6 12 5

F = 2.06 2.05 2.06 1.12 2.05
```

Sorted hand is then

```
Value = 6 6 5 5 12
```

Sort so most frequent cards are first

```
% Sort by frequency
F = Value / 100;
for i=1:5
   F(i) = F(i) + sum(Value == Value(i))
   end
[a,b] = sort(F, 'descend');
Value = Value(b);
Suit = Suit(b);
Hand = Hand(b);
for i=1:13
   N(i) = sum(Value == i);
   end
N = sort(N, 'descend')
```

Matlab Code (continued)

Draw based upon type of hand

Flush, 4-of-a-kind, full-house

• Draw no cards

3-of-a-kind

• Draw two

Two-Pair

• Draw one

Pair

Draw three

High-Card

• Draw four

```
if(NS(1) == 5)
   disp('flush')
elseif(N(1) == 4)
   disp('4 of a kind')
elseif((N(1) == 3) * (N(2) == 2))
   disp('full house')
elseif((N(1) == 3) * (N(2) < 2))
   disp('three of a kind')
   Hand(4:5) = Deck(Top:Top+1);
   Top = Top + 2;
elseif ((N(1) == 2) * (N(2) == 2))
   disp('two pair')
   Hand(5) = Deck(Top);
   Top = Top + 1;
elseif((N(1) == 2) * (N(2) < 2))
   disp('pair')
   Hand(3:5) = Deck(Top:Top+2);
   Top = Top + 3;
elseif(N(1) < 2)
   disp('High Card')
   Hand(2:5) = Deck(Top:Top+3);
   Top = Top + 4;
end
```

Matlab Code (continued)

Once the draw step is done, determine the hand type

After 100,000 hands, display totals for each hand type

```
Value = mod(Hand, 13) + 1;
   Suit = floor(Hand/13) + 1;
% Check for a flush
   NS = zeros(4,1);
   for i=1:4
      NS(i) = sum(Suit == i);
      end
   NS = sort(NS, 'descend');
% check for pairs
   for i=1:13
      N(i) = sum(Value == i);
      end
   N = sort(N, 'descend')
if (NS(1) == 5) flush=flush+1; end
if (N(1) == 4) Pair 4 = Pair + 4 + 1; end
if ((N(1) == 3) * (N(2) == 2)) FH=FH+1; end
if ((N(1) == 3) * (N(2) < 2)) Pair3=Pair3+1; end
if ((N(1) == 2) * (N(2) == 2)) Pair 22 = Pair 22 + 1;
if ((N(1) == 2) * (N(2) < 2)) Pair2=Pair2+1; end
if (N(1)<2) HighCard=HighCard+1; end
```

Monte-Carlo Simulation Results

Check the program by comparing the results with 0 draws

- Should match previous calculations
- Not exact but close

	0 Dr 5-Card		1-Draw 5-Card Draw		
	Simulation	Calculation	Simulation	Calculation	
4 of a kind	22	24	235	243	
full house	166	144	1,200	?	
flush	196	195	309	?	
3 of a kind	2,151	2,112	7,853	?	
2-pair	4,791	4,753	13,590	?	
1-pair	42,264	42,194	51,863	?	
High-Card	50,606	50,578	25,259	?	

Number of each type of hand in 100,000 games

Alternate Draw Strategies

Suppose you have

- High-Card, and
- Four cards of a suit

Should you

- Draw four (current strategy), or
- Draw one card and go for a flush?

Solution:

Calculate the probability of ending up with each type of hand

- p(straight-flush) | discard 4 cards
- p(4-of-a-kind) | discard 4 cards
- etc.

VS.

- p(straight-flush) | discard 4 cards
- p(4-of-a-kind) | discard 4 cards
- etc.

Assign a value to each hand type

- Video Poker payout is one option
- Determine which strategy has the highest over value

Alternate Draw Strategies (take 2)

Suppose you have

- High-Card, and
- A run of four cards

Should you

- Draw four (current strategy), or
- Draw one card and go for a straight?

Alternate Draw Strategies (take 3)

Suppose you have

- · High-Card, and
- You're missing one card for a straight

Should you

- Draw four (current strategy), or
- Draw one card and go for a straight?
- (termed an inside-straight)

Note: There are better draw strategies

- They're a lot more complicated to analyze
- They're a lot more complicated to code

Poker Variations:

How does adding more draw rounds affect the odds?

- Very complicated to calculate
- Easy to simulate
 - Add multiple draw rounds
 - Implement with a for-loop
- note: This code never tries for a straight or a flush

	0 Draws 5-card stud	1 Draw 5-Card Draw	2 Draws	3 Draws
4 of a kind	22	235	774	1,541
full house	166	1,200	3,647	6,681
flush	196	309	321	372
3 of a kind	2,151	7,853	13,860	18,737
2-pair	4,791	13,590	21,989	27,962
1-pair	42,264	51,863	47,387	38,917
High-Card	50,606	25,259	12,373	6,162

Number of each type of hand in 100,000 games

Texas Hold'Em

Yet another variation of poker is Texas Hold'Em

- Each player is dealt 2 cards
- The dealer then deals out 5 cards on the table, face up
- Your poker hand is the best hand you can form with these seven cards

What are the odds of each type of hand?

Texas Hold-Em

This is a combinatorics problem

- Not a conditional probability
- Solution is left for homework sets

Summary

Adding a draw step changes the odds in poker

Enumeration doesn't work in this case

Too many hands to go through

Combinatorics with conditional probabilities does work

- List out all possible paths to get to a given hand
- Uses the results from 5-card stud to find p(B)
- Calculate p(AlB)p(B) for each path

Monte-Carlo Simulations also work

- Better draw strategies are more difficult to program
- Also allows you to add more draw steps
 - Use a for-loop

