
Enumeration

ECE 341 Random Processes

Lecture #3

Please visit Bison Academy for course syllabus, lecture notes,
recorded lectures, homework sets, and solutions

www.BisonAcademy.com

Enumeration

Probability is defined as the number of times an event occurs as the number

of trials goes to infinity.

This leads to the previous lecture

Monte Carlo experiments

A second method is enumeration

Assume all outcomes have equal probability

The exact probability of an event is then

p(x) = 


number of ways to obtain outcome x

total number of possible outcomes



Enumeration is a brute-force technique.

In some cases, it works very well.

In other cases, there are simply too many possible outcomes

Topics in This Lecture

Solve the same problems we solved using Monte-Carlo techniques:

Probability of rolling a 1 on a

6-sided die

Probability distribution of the

max(d4, d6)

Max of (d4, d6) vs. d6

5-Game Match (tree diagram),

Rolling 6-Dice

Drawing a full-house or 3-of-a-kind

in poker

Case 1: Rolling a single 6-sided die (d6)

What's the probability of rolling a 1 on a 6-sided die?

Previous lecture with 1 million rolls

Trial 1: 166,219 times

Trial 2: 167,090 times

Trial 3: 166,969 times

From these results,

 (ish)p ≈ 0.166

That's one problem with Monte Carlo

simulations

Results are approximate

You can place a bound on the actual

probability
Student-t test

Future topic

 Case 1: Enumeration

Assume all outcomes have equal probability.

List all possible outcomes

{1, 2, 3, 5, 6}

N = 6

Count how many are successes

{1}

M = 1

Hence, the probability of rolling a one is

p =
M

N
= 1/6

Note

This matches up with Monte Carlo experiments

The answer is exact

Case 2: A = max(d4, d6)

Player A rolls two dice

{ d4, d6 }

A's score is the maximum of the two

What is the probability A scores 1..6 points?

Case 2 (cont'd)

Step 1: List out all possibilities

There are 24 possibilities (N = 24)

(1,1) (1,2) (1,3) (1,4) (1,5) (1.6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

Step 2: List all possible ways to get each outcome:

1: (1,1)

2: (2,1), (2,2), (2,3)

3: (3,1), (3,2), (3,3), (2,3), (1,3)

4: (1,4), (2,4), (3,4), (4,4), (4,3), (4,2), (4,1)

5: (1,5), (2,5), (3,5), (4,5)

6: (1,6), (2,6), (3,6), (4,6)

Case 2: (cont'd)

The odds are then

The number of ways to get each outcome

Divided by the total number of possible outcomes
x

(Score)
Number of Ways to

Get this Score
p(x)

1 1 1/24

2 3 3/24

3 5 5/24

4 7 7/24

5 4 4/24

6 4 4/24

p(x) is termed the probability density function

Case 3: max(d4, d6) vs. d6 (conditional probability)

A third example is this:

A rolls a d4 and a d6
Takes the higher score

B rolls a d6

Highest score wins

B wins on ties.

What is the probability that A will win this

game?

Monte Carlo: p ≈ 0.486

Case 3: (cont'd)

Problem: Too many possible outcomes

N = 4 * 6 * 6 = 144

Solution: Use conditional probabilities

Divide-and-conquer technique

Split this into six smaller problems

p(A) =

p(A|B=1) p(B=1) +

p(A|B=2) p(B=2) +

p(A|B=3) p(B=3) +

p(A|B=4) p(B=4) +

p(A|B=5) p(B=5) +

p(A|B=6) p(B=6)

Case 3: (cont'd)

B = 1:

A has to score 2 or higher to win.

There are 23 ways for A to score 2 or more points, meaning

p(A B = 1) =
23

24
p(B = 1) =

1

6

B = 2:

A has to score 3 or higher to win.

There are 20 ways for A to score 3 or more points, meaning

p(A B = 2) =
20

24
p(B = 2) =

1

6

B = 3:

A has to score 4 or higher to win.

There are 15 ways for A to score 4 or more points, meaning

p(A B = 3) =
15

24
p(B = 3) =

1

6

Case 3 (cont'd)

B = 4:

A has to score 5 or higher to win.

There are 8 ways for A to score 5 or more points, meaning

p(A B = 4) =
8

24
p(B = 4) =

1

6

B = 5:

A has to score 6 or higher to win.

There are 4 ways for A to score 6 or more points, meaning

p(A B = 5) =
4

24
p(B = 5) =

1

6

B = 6: A loses

p(A B = 6) = 0 p(B = 6) =
1

6

Case 3 (cont'd)

Therefore, the probability that A wins is

p(A) = 


23

24





1

6

 + 

20

24





1

6

 + 

15

24





1

6

 + 

8

24





1

6

 + 

4

24





1

6

 + 

0

24





1

6



p(A) = 


70

144

 = 0.486111

This matches up with the Monte-Carlo simulations

except that this answer is exact.

Case 4: 5-Game Match (Tree Analysis)

Similar to Baseball or NBA finals

A and B are playing a match

A has a 60% chance of winning any

given game.

Match consists of 5 games

Whoever wins the most games wins the

match

What is the chance that A wins the match?

Monte Carlo results:

p = 0.682 (ish)

Case 4: Tree Diagram

Each game has two possible outcomes:

A wins (p = 0.6)

B wins (p = 0.4)

List out all ways the series can proceed:

0-0

1-0

A Wins

p = 0.6

A Wins

p = 0.6
A Wins

p = 0.6

B Wins

p = 0.4

B Wins

p = 0.4

B Wins

p = 0.4

0-1

2-0

3-0 2-1

3-1
2-2

3-2 2-3

1-1

2-1 1-2

3-1
2-2

3-2 2-3

2-2

3-2 2-3

1-3

1-1

2-1 1-2

3-1 2-2

3-2 2-3

2-2

3-2 2-3

1-3

0-2

1-2

2-2

3-2 2-3

2-3

0-3

Case 4 (cont'd)

Count the number of ways A wins:

1 outcome ends 3-0

3 outcomes end in 3-1

6 outcomes end in 3-2

The odds of A winning the match are

p(A) = 1 ⋅ p3 + 3 ⋅ p3q + 6 ⋅ p3q2

p(A) = 0.68256

Note

This matches up with Monte Carlo

The answer is exact

Sidelight: Sampling With and Without Replacement

Tree diagrams for finite series

First to win 3 games

In a bin of 3 marbles (2 black, one red)
Pick one marble

Stop if it's red

If it's not red, leave it our and repeat

Tree diagrams do not work for infinite series

First to win by 3 games

In a bin of 3 marbles (2 black, one red)
Pick one marble

Stop if it's red

If it's not red, replace the marble

Repeat

For the latter, we need a different tool

Markov chains

Future topic

1 2 3

1 3

1

1 2

1

1

1

1 1

1

1 1

2

2

2 2 2 2

3

3

3

3 3

3

3

Start

Enumeration with Matlab

Enumeration is a brute-force solution

Go through every possible outcome

Count how many of them were

successes

With Matlab, you can write programs to

grind out all possibilities using nested

for-loops.

Case 5: Farkle (6d6)

Suppose you roll six 6-sided dice (6d6)

What are the odds of rolling

Two triples (xxx yyy)?

One triple (xxx aab or xxx abc)?

From Monte-Carlo

Two triples: 6337 in 1,000,000 rolls

One triple: 308,026 in 1,000,000 rolls

Case 5: Number of Rolls

There are 46,656 ways to roll 6d6.

The first die has six possibilities

The second die also has six possibilities

etc

N = 66 = 46, 656

That seems like a large number, but it's no

problem for Matlab.

Case 5 Nested For-Loops

Start by going through every possible outcome

Nested for-loops

46,656 different outcomes

for d1 = 1:6

 for d2 = 1:6

 for d3 = 1:6

 for d4 = 1:6

 for d5 = 1:6

 for d6 = 1:6

 Roll = [d1, d2, d3, d4, d5, d6];

 end

 end

 end

 end

 end

end

Case 5: Determine the frequency

Once you roll the dice

Find the frequency of each number

Sort in decreasing order

Example:

Roll = {2, 5, 2, 2, 5, 6}

F(1) = 3
There are three 2's

F(2) = 2
There are two 5's

Next highest frequency

F(3) = 1
There is one 6

Roll = [d1, d2, d3, d4, d5, d6];

F = zeros(1,6);

for i=1:6

 F(i) = sum(Roll == i);

end

F = sort(F, 'descend')

[Roll]

[F]

script window

Roll = 2 5 2 2 5 6

F = 3 1 1 0 0 0

command window

Case 5: Determine the roll type

Once you know F(), you can determine the type of hand
if((F(1) == 3)*(F(2)==3))

 Pair33 = Pair33 + 1;

 end

if((F(1) == 3)*(F(2)<3))

 Pair3 = Pair3 + 1;

 end

By counting, you'll know the total number of hands that result in two and

one triples.

Net Code

Nested for-loops

Goes through all

combinations

Pair33 = 0;

Pair3 = 0;

N = 0;

for d1 = 1:6

 for d2 = 1:6

 for d3 = 1:6

 for d4 = 1:6

 for d5 = 1:6

 for d6 = 1:6

 Dice = [d1,d2,d3,d4,d5,d6];

 N = N + 1;

 F = zeros(1,6);

 for i=1:6

 F(i) = sum(Dice == i);

 end

 F = sort(F, 'descend');

 if((F(1) == 3)*(F(2) == 3))

 Pair33 = Pair33 + 1;

 end

 if((F(1) == 3)*(F(2) < 3))

 Pair3 = Pair3 + 1;

 end

 end

 end

 end

 end

 end

end

Case 5: Results

The results are

Pair33 = 300

Pair3 = 14400

N = 46656

Elapsed time is 1.972013 seconds.

There are

300 ways to get two triples,

14,000 ways to get one triple, and

46,656 total number of ways to roll three dice.

This took 1.97 seconds

3.4GHz Windows computer

Not a problem for Matlab

Case 6: Enumeration with Card Games

Finally, let's use enumeration in

poker

52 card deck

Deal out 5 cards

Create nested for-loops

Avoid duplication of cards

Go through every possible hand

2,598,960 total

N = 0;

for c1 = 1:52

 for c2 = c1+1:52

 for c3 = c2+1:52

 for c4 = c3+1:52

 for c5 = c4+1:52

 Hand = [c1,c2,c3,c4,c5] - 1;

 N = N + 1

 end

 end

 end

 end

end

[N]

Script Window

N = 25989690

Command Window

Case 6: Determine hand

Hand is card number

0 to 51

Value = card value

1..13

Ace through King

Suit = Card suit

1..4

Club, Diamond, Heart, Spade

Example:

Card #1 is the 2 of clubs

Card #7 is the 8 of clubs

Card #9 is the 10 of clubs

Card #22 is the 10 of diamonds

Card #47 is the 9 of spades

Hand = [c1,c2,c3,c4,c5] - 1;

Value = mod(Hand, 13) + 1

Suit = floor(Hand/13) + 1

Script Window

Hand = 1 7 9 22 47

Value = 2 8 10 10 9

Suit = 1 1 1 2 4

Command Window

Case 6: Determine hand type

Once you have your hand

Determine the frequency of each

card
variable F()

Sort in descending order
F(1) is highest frequency of cards

Check hand type
3 + 2 = full house

3 + 1 = three of a kind

F = zeros(1,5);

for i=1:13

 F(i) = sum(Value == i);

end

F = sort(F, 'descend');

if((F(1) == 3)*(F(2) == 2))

 FH = FH + 1;

elseif((F(1) == 3)*(F(2) < 2))

 Pair3 = Pair3 + 1; end

end

Case 6: Resulting Matlab Code

Every possible poker hand

Loops 2,598,960 times

Takes 186 seconds to run

Pair3 = 0;

FH = 0;

N = 0;

for c1=1:52

 for c2 = c1+1:52

 for c3 = c2+1:52

 for c4 = c3+1:52

 for c5 = c4+1:52

 N = N + 1;

 Hand = [c1,c2,c3,c4,c5] - 1;

 Value = mod(Hand,13) + 1;

 Suit = floor(Hand/13) + 1;

 F = zeros(1,13);

 for n=1:13

 F(n) = sum(Value == n);

 end

 F = sort(F, 'descend');

 if ((F(1) == 3)*(F(2) == 2))

 FH = FH + 1;

 elseif ((F(1) == 3)*(F(2) < 2))

 Pair3 = Pair3 + 1;

 end

 end

 end

 end

 end

end

Case 6: Results

Net Result:

2,598,960 poker hands

3744 full-houses

54,912 three-of-a-kind

Results match with Monte Carlo

Monte-Carlo is approximate

Enumeration is exact

Results match with Wikipedia

Poker has been analyzed to

death

N = 2598960

FH = 3744

Pair3 = 54912

Elapsed time is 186.303521 seconds.

p(fh) = 


3744

2,598,960

 = 0.0014406

p(3ok) = 


54,912

2,598,960

 = 0.0211285

Summary

While Monte-Carlo simulations give you approximate probabilities,

enumeration gives you exact probabilities.

Enumeration is a brute-force approach:

You go through list out every possible outcome.

Assuming each outcome has equal probability,

p = 


the number of successful outcomes

the total number of outcomes



Sometimes, enumeration works well

Sometimes, enumeration doesn't work

There are too many possible outcomes

For the latter case, we need a different tool

Combinatorics

Next lecture

